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Abstract The effect of dynamical self-orientation and
its applicability for the identification of natural frequen-
cies of the investigated systems is demonstrated in this
paper. Unidirectional vibration exciter is fixed to the in-
vestigated systems via a pivot link and can rotate around
it. It is shown that the exciter changes its orientation in
the steady state motion mode when the frequency of ex-
citation sweeps over the fundamental frequency of the
examined system. Approximate analytical analysis of
the discrete system illustrates the basic principle of the
effect of dynamical self-orientation. Numerical analy-
sis of both the discrete and different continuous elastic
systems confirms the applicability of the effect of self-
orientation for the identification of natural frequencies.
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1 Introduction

Nonlinear pendulum is a paradigm in the study of os-
cillations and other phenomena in physics and nonlin-
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ear dynamics [1]. It has deserved much attention, from
many viewpoints, including different model complex-
ity, forcing, and damping aspects.

Pendulums are used in many different engineering
applications, for many different purposes. Whenever a
nonlinear pendulum is attached to an engineering struc-
ture, the dynamics of the whole system becomes rather
complicated [2]. Computational analysis of such cou-
pled systems comprising continuous and discrete ele-
ments is especially demanding [3, 4].

Typical applications where pendulums are attached
to engineering structures include dynamic quenching of
structural oscillations [5, 6]. Another, different but typ-
ical example is the excitation of engineering structures
when a driven pendulum with a constant or periodic
torque is attached to a continuous system [7, 8].

Vibration exciters can be represented as unidirec-
tional shakers with an inertia mass oscillating along
a straight guide. What would happen if such a vibra-
tion exciter would be attached to an elastic system via
a pivot link and could rotate around it? This paper is
focused on the excitation of structures by such general-
ized pendulums and nonlinear dynamical effects taking
place in such systems.

2 Basic model of the system

The effect of dynamical self-orientation is demon-
strated for a simple basic model presented in Fig. 1.
All system components can perform only in-plane mo-
tions. Solid body 1 can move only along the y-axis in
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Fig. 1 Model of the basic system

its guide 2. In its turn, the guide 2 can move only along
the x-axis. Mass of the body 1 is My ; mass of the guide
2 is Mx0; bodies 1 and 2 are suspended on linear elastic
springs and linear viscous dampers with appropriate
coefficients: Cx , Hx , Cy , Hy . If no vibration exciters
would be attached to body 1, there would exist two nat-
ural eigenfrequencies – one representing oscillations
along the x-axis; another – along the y-axis. Such a basic
model will help to demonstrate the principle of dynam-
ical self-orientation when the vibration exciter aligns
itself in the direction of the x-axis or the y-axis and this
orientation is dependent on the frequency of excitation.

A unidirectional vibration exciter is fixed to the body
1 at point Ai (xi ; yi ) via a pivot link and can rotate
around it. The vibration exciter consists of two ele-
ments – a guide 3 and a mass m, which can move along
the guide 3. The mass center of the guide 3 is located
at the point Ai ; its mass is incorporated into My . Iner-
tia moment of the guide 3 is J. The movable mass m
is located at point B(xB ; yB). The distance z = |Ai B|
is defined explicitly as a function of time (kinematic
vibration excitation). The angle between guide 3 and
the x-axis is α.

It is clear that

xB = xi + z cos α;
yB = yi + z sin α.

(1)

Then the kinetic, potential, and dissipation energies of
the system take the following form:

T = 0, 5
(
Mx ẋ2

i + My ẏ2
i + J α̇2 + m

(
ẋ2

i + ẏ2
i + ż2

+ z2α̇2 + 2ẋi (ż cos α − zα̇ sin α)

+ 2ẏi (ż sin α + zα̇ cos α)
))

;

� = 0, 5
(
Cx x2

i + Cy y2
i

)
; (2)

D = 0, 5
(
Hx ẋ2

i + Hy ẏ2
i + Hαα̇2),

where top dots denote full derivatives by time; Mx =
Mx0 + My + m0; Hα is the coefficient of angular vis-
cous damping of the pendulum.

It is assumed that the motion of the mass m is har-
monic:

z = Z cos(ωt + ϕ), (3)

where Z is the amplitude of oscillation; ω – angu-
lar velocity; ϕ – phase shift. Such a holonomic con-
straint reduces the four degree of freedom system (xi ;
yi ; α and z) to a three degree of freedom system.
Extended Lagrange equation results in the following
system of second-order nonlinear ordinary differential
equations:

ẍi + hx ẋi + p2
x xi = Xi ;

ÿi + hy ẏi + p2
y yi = Yi ;

J α̈ + Hαα̇ = L ,

(4)

where

Xi = −μx ((z̈ − zα̇2) cos α − (zα̈ + 2żα̇) sin α);

Yi = −μy((z̈ − zα̇2) sin α + (zα̈ + 2żα̇) cos α); (5)

L = −mz(zα̈ + 2żα̇ − ẍi sin α + ÿi cos α);

hx = Hx

Mx + m
; hy = Hy

My + m
; px =

√
Cx

Mx + m
;

py =
√

Cy

My + m
; μx = m

Mx + m
; μy = m

My + m
.

3 Approximate analysis of the basic model

It is clear that full investigation of the basic model
requires solution of the set of nonlinear differential
equations in Equation (4). Nevertheless, analytical ap-
proximation can be straightforward under the assump-
tion that the angle α is almost stationary in a steady
state regime of motion. In that case, the term L must be
small:

J α̈ + Hαα̇ = εL , (6)
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where ε is a small positive constant. Then the system
variables are expanded in power series of ε:

α = α0 + εα1 + · · · ;
xi = xi0 + εxi1 + · · · ;
yi = yi0 + εyi1 + · · · .

(7)

Collecting the terms at the zeroth order of ε produces:

α0 = const;

xi0 = μx Zω2 cos α0

Dx

((
p2

x − ω2) cos ωt + hxω sin ωt
)
;

yi0 = μy Zω2 sin α0

Dy

((
p2

y − ω2) cos ωt + hyω sin ωt
)
.

(8)

where

Dx = (
p2

x − ω2
)2 + (hxω)2;

Dy = (
p2

y − ω2
)2 + (hyω)2.

(9)

Next, small motion around α0 can be found from the
equation

J ä1 Haȧ1 = L0, (10)

where L0 is the approximation of L at a = a0; xi =
xi0; yi = yi0:

L0 = −m Z (−ẍi0 sin a0 + ÿi0 cos a0). (11)

The removal of the secular terms from Equation (11)
leads to the condition:

L̄0 = m Z2ω4

4
D sin(2a0) = 0, (12)

where the top line denotes averaging by time, and

D = −μx
p2

x − ω2

Dx
+ μy

p2
y − ω2

Dy
. (13)

Equation (12) produces two solutions:

(α0)1 = πn;

(α0)2 = π

2
+ πn.

(14)

The stability condition is determined from Equations
(10) and (15):

−D cos(2α0) > 0. (15)

Thus, (α0)1 is stable and (α0)2 is unstable when D < 0,
and vice versa when D > 0. The critical frequencies at
which the stability of solutions, represented by Equa-
tion (14), change can be determined from the following
equation, which is a third-order polynomial in terms of
ω2:(− μx

(
p2

y − ω2) + μy
(

p2
x − ω2))(p2

x − ω2)(p2
y − ω2)

+( − μx
(

p2
x − ω2)h2

y + μy
(

p2
y − ω2)h2

x

)
ω2 = 0.

(16)

When the linear damping coefficients are small, the so-
lution of Equation (16) can be approximated as follows:

ω2 = ω2
0 + εω2

1 + · · · (17)

on the assumption that hx and hy are small:

hx = εhx ;
hy = εhy .

(18)

Solving Equation (16) up to linear terms of ε produces
three approximate roots:

(ω2)1
∼= p2

x + h2
x
μy

μx

p2
x

p2
x − p2

y
;

(ω2)2
∼= p2

y + h2
y
μx

μy

p2
y

p2
y − p2

x
; (19)

(ω2)3
∼= −μy p2

x + μx p2
y

μx − μy

+
(

h2
y
μx

μy
+ h2

x
μy

μx

) −μy p2
x + μx p2

y

(μx − μy)
(

p2
x − p2

y

) .

It can be noted that the third root will exist only if
(ω2)3 > 0. If the third root does not exist, and

p2
x < p2

y (20)

the vibration exciter will oscillate in the direction of
x-axis at following frequencies:

0 < ω < ω1 or ω2 < ω < ∞. (21)
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If

ω1 < ω < ω2 (22)

then the vibration exciter will oscillate in the direction
of y-axis. Also, in that case, (ω2)1 is slightly lower than
p2

x and (ω2)2 is slightly higher than p2
y .

These approximate analytical results lead to an im-
portant conclusion. A unidirectional vibration exciter
with an additional angular degree of freedom can be
used for the identification of natural frequencies of elas-
tic structures. The vibration exciter should settle to ei-
ther vertical or horizontal direction in the steady state
motion mode depending on the frequency of excitation.
The first critical frequency separating vertical and hor-
izontal motions will be an estimate of the fundamental
frequency of the structure.

4 Numerical analysis of the basic system

The set of differential equations of motion in Equa-
tion (3) is solved using direct time marching tech-
niques. The results of simulation are presented in the
Poincare diagram in Fig. 2. At every discrete value of
ω, time marching is continued until the transient pro-
cesses cease down. Then, the trajectories in phase plane
α − α̇ are sectioned by plane α̇ = 0. It can be noted that
the vibration exciter can rotate in a steady state regime
of motion and thus plotting of α could be quite compli-

cated due to possible boundlessness of α. Therefore,
every value of α produced by Poincare sectioning is
mapped into the interval [−π, π ] by simple modulus
2π transformation adding or subtracting 2πk with ap-
propriate k ∈ Z.

The amplitude of oscillation Z is decreased at in-
creasing ω to preserve constant maximum kinetic en-
ergy of the exciter (at constant α):

(TV)max = m ((ż)max)2

2
= m (Zω)2

2
= const, (23)

where TV − kinetic energy of the vibration exciter.
The following parameters were selected for numerical
simulation: m = 0.1; Mx = 2; My = 1; Cx = 1; Cy =
1; hx = 0.05; hy = 0.05. The following parameters are
calculated using Equations (4) and (19):

px ≈ 0.690; py ≈ 0.954; ω1 ≈ 0.686;

ω2 ≈ 0.976. (24)

Figure 2 shows excellent correlation between analytical
and numerical analysis. In the region 0 < ω < ω1, the
exciter is oscillating in the x-axis direction (angle α is
zero in the steady state regime of motion). The transient
process is illustrated in Fig. 3 at ω = 0.4.

The exciter orients itself in the direction of y-axis
(angle α equal to π /2 or −π /2) in the frequency range
ω1 < ω < ω2. The transient dynamics is illustrated in
Fig. 4 at ω = 0.7. Chaotic system response is observed
in a relatively short frequency range around ω = 0.75.

Fig. 2 Poincare map at
m = 0.1; Mx = 2; My = 1;
Cx = 1; Cy = 1;
Hα = 0.05; hx = 0.05;
hy = 0.05; Z = 0.15

ω
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Fig. 3 Transient dynamics
at ω = 0.4

Fig. 4 Transient dynamics
at ω = 0.7

Finally, the vibration exciter again orients itself in
the direction of x-axis in the frequency range ω2 <

ω < ∞. It can be noted that a burst of chaotic mo-
tion is observed in the region just over ω2. This chaotic
motion is illustrated in Figs. 5 and 6. The exciter tries
to settle around α = π/2 + πk, k ∈ Z, but these so-
lutions are already unstable in this frequency range.
Time moments when the pendulum crosses the vicin-
ity of α = π/2 + πk are marked by circles in Fig. 6.
Such a diagram provides insight into the complexity
of the chaotic response where both the direction of the
jump and the duration of the stay around the unstable
solutions are random.

Finally, it can be noted that the regions of chaotic
response shrink at lower values of the exciter’s mass m
and the amplitude Z. But, in that case, the time lengths
of the transient processes are extended, which is quite
a natural result.

5 Computational issues for an elastic structure

coupled with a discrete self-orientating exciter

Numerical models of elastic continuous systems are
built exploiting finite-element techniques [9]. Meshing
of a continuous structure produces matrix ordinary
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Fig. 5 Transient dynamics
at ω = 1.1

Fig. 6 Transient dynamics
at ω = 1.1

differential equation of the following form:

[M] {Ẍ} + [H ]{Ẋ} + [C]{X} = {F}, (25)

where [M], [H], [C] – represent mass, damping, and
stiffness matrixes appropriately; {Ẍ}, {Ẋ}, {X} – rep-
resent global vectors of acceleration, velocity, and dis-
placement; {F} – represents the vector of external
forces. Every node (except boundary nodes) corre-
sponds to two degrees of freedom (two ordinary differ-
ential equations) for models describing in-plane mo-
tions; one – to motions in the direction of the x-axis,
another – in the direction of the y-axis.

Self-orientating exciter is represented by three
second-order ordinary differential equations – two cor-
responding to in-plane motions; one – rotation (Eqs.
(4) and (5)). The exciter can be attached to any point of
the elastic structure, but it is natural to assume that it is
attached to one of the nodes of the continuous system
meshed by finite-element techniques. Let us denote two

degrees of freedom corresponding to the node to which
the exciter is attached as r (corresponding to displace-
ment in the direction of the x-axis) and s (corresponding
to displacement in the direction of the y-axis).

Then, the nonlinear dynamical effects caused by the
self-orienting vibrator are evaluated through the exter-
nal force terms on the right sides of the rth and sth dif-
ferential equations in the matrix system of equations,
represented by Equation (25). Also, an additional dif-
ferential equation corresponding to the rotation of the
exciter around the pivot node must be added that in-
creases the number of degrees of freedom by one. The
right sides of the rth and sth differential equations take
the following form (see Equations (4) and (5)):

fr = −m(ẍr + (z̈ − zα̇2) cos α − (zα̈ + 2żα̇) sin α);

fs = −m(ẍs + (z̈ − zα̇2) sin α + (zα̈ + 2żα̇) cos α),

(26)
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where fr and fs are rth and sth components of vector
{F} in Equation (25). A separate differential equation
describing the variation of angle α (rotation) takes the
following form (see Equation (5)):

J α̈ + Hαα̇ = − mz(zα̈ + 2żα̇ − ẍr sin α + ẍs cos α)

(27)

Analysis of a continuous structure coupled with
a discrete system is a computationally demanding
problem, especially when one of the systems is linear
and another – nonlinear [3]. The terms mẍr and mẍs

in Equation (26) are brought from the right side to
the left side of corresponding differential equations
in order to preserve the stability of numerical time
marching codes. Thus, the mass matrix of the elastic
structure in Equation (25) is augmented. The mass m
is added to the diagonal elements in the rth and sth
lines of the mass matrix (note the minus signs at terms
mẍr and mẍs in Equation (26)). This augmentation
naturally represents the mass increase of the node to
which the vibration exciter is attached.

Analogous to the basic model, it is assumed that z
is a predefined harmonic process (Equation (3)). Then
the governing differential equations (Equations (25–
27)) can be solved simultaneously using direct time
marching techniques.

6 Identification of fundamental frequency of an

elastic cantilevered plate

Initially, eigenshapes and natural frequencies of an
elastic structure are calculated (with the augmented
mass matrix; m = 0.1). The first four eigenshapes
of a cantilevered plate are presented in Fig. 7 where
grey lines stand for the structure in the status of
equilibrium; dark solid lines – for appropriate in-plane
eigenshapes; black dots represent the node to which the

self-orientating exciter is attached. Natural frequencies
are printed at the bottom of appropriate eigenshapes.

Next, the transient processes are analyzed at differ-
ent frequencies of excitation. In our model, r = 23 (the
degree of freedom representing the motion of the node
to which the exciter is attached in the direction of the
x-axis) and s = 24 (same node in the direction of the y-
axis). Transient process at ω = 0.4 is presented in Fig.
8; at ω = 0.65 – in Fig. 9. It can be clearly seen that
at ω = 0.4, the angle α settles at 0, while the node to
which the exciter is attached oscillates in the direction
of the x-axis (the same direction as the exciter itself).
On the contrary, at ω = 0.65, the angle α settles at
π/2, while both the node and the exciter oscillate in
the direction of the y-axis. That is even more clearly
illustrated in the phase plane x–y in Fig. 10 where the
transient dynamics of all nodes of the structure is plot-
ted simultaneously.

Finally, the Poincare map is constructed for steady
state processes at different frequencies of excitation
(Fig. 11). It can be seen that the regime of motion
at α = 0 loses its stability at frequencies around 0.5.
Then, the process stabilizes again around ω = 0.6, but
already around α = (π/2). That gives an estimate that
the first fundamental frequency of the system under in-
vestigation is in the region 0.5 < ω < 0.6, which is a
rather good estimate (Fig. 7).

Such an estimate can be explained by the following
considerations. If a system is excited at a frequency
lower than its fundamental frequency (unidirectional
harmonic excitation in any possible direction), then the
amplitude of the structure’s response (in the steady state
motion mode) will be highest in the direction corre-
sponding to motion according to its fundamental eigen-
shape. The effect of self-synchronization between the
excited structure and the exciter takes place. The exciter
orients itself in such a direction, which can generate
maximum amplitude of the excited system.

When the frequency of excitation approaches the
second natural frequency, the direction of the maximum

Fig. 7 The first four
eigenshapes and natural
frequencies of the elastic
structure
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Fig. 8 α, xr and xs versus time – transient process at ω = 0.4

Fig. 9 α, xr and xs versus time – transient process at ω = 0.65

amplitude of the structure’s response already coin-
cides with the direction corresponding to motion ac-
cording to its second eigenshape. Again, the effect
of self-synchronization orients the exciter to the di-
rection according to the second eigenshape of the
structure.

Better estimates of the fundamental frequency can
be achieved if either the mass m or the amplitude Z

is decreased. But then, as mentioned previously, the
length of the transient processes becomes large.

Different nodes could be selected for attachment of
the vibration exciter. General recommendation would
be to select such nodes, which are most sensitive to
external excitation. In our example, it would not be a
good idea to select a node near the fastened bottom
nodes. In principle, the observed phenomena would be
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Fig. 10 Transient processes (traces of the nodes) in the phase plane at ω = 0.4 (a) and ω = 0.65 (b); dashed mesh represents the
structure in the state of equilibrium

Fig. 11 Poincare map of the node to which the exciter is attached

the same, but the sensitivity and the accuracy of the
estimates would be considerably decreased.

7 Identification of fundamental frequency of

elastic ring with internal clamped radius

A much more complex system is analyzed in this sec-
tion. The first eight eigenshapes of an elastic ring with
internal clamped radius are presented in Fig. 12 with ap-

propriate eigenfrequencies printed inside every draw-
ing of eigenshape. Finite-element mesh in the state of
equilibrium is shown in grey lines; deformed mesh ac-
cording to eigenshpe – in black lines. Black dot shows
the node to which the vibration exciter is attached.

It can be seen that at least the first eigenshapes of
the described system can be classified according to the
type of the dominant oscillation – angular or radial
oscillation. The nodes of the structure perform angular
oscillations when the ring vibrates according to its first
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Fig. 12 First eigenshapes
of an elastic ring with
internal clamped radius

Fig. 13 Poincare map of
the node to which the
exciter is attached

eigenshape. The second and the third eigenshapes are
also angular eigenshapes. By the way, the second and
the third eigenshapes would be coupled eigenshapes
(same frequency) if the vibration exciter would not be
attached and the mass matrix of the system would not
be augmented. The fourth eigenshape is already a radial
eigenshape.

As demonstrated in the previous examples, the
self-orientating vibration exciter can classify different
eigenshapes. The major difference now is that the first
three eigenshapes of the elastic ring are of the same
type. So, it is hard to expect that the self-orientating
vibration exciter could distinguish the first eigenshape
from the second one. But the fourth eigenshape is al-
ready different from the first three ones – the nodes now

oscillate also in the radial direction. Therefore, one can
expect that the self-orientating exciter will exhibit ten-
dency to orient itself in the radial direction at the fre-
quencies over ω3. Really, the Poincare map (Fig. 13)
of the node to which the self-orientating vibration ex-
citer is attached demonstrates that the stability of the
vibrator’s motion in the angular direction is lost over
the frequency equal to 1.08. This is a very good re-
sult demonstrating that the effect of self-orientation
can be applied also for rather complex elastic
structures.

Finally, it can be noted that the oscillating mass and
the amplitude of oscillations of the exciter must be rela-
tively low compared to the structure under investigation
in order to provide sufficiently accurate estimates.
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8 Concluding remarks

The effect of self-orientation is presented and illus-
trated in this paper. A vibration exciter with an addi-
tional angular degree of freedom can serve as a detector
of natural frequencies. Approximate analytical analy-
sis of a basic model provides insight into the principles
of dynamical self-orientation. It is shown that the self-
orientating vibration exciter can discriminate different
eigenshapes of elastic structures to which it is attached.
This effect can be applicable for the detection of fun-
damental frequencies of different elastic structures.

It can be noted that only in-plane vibrations are con-
sidered in this paper. Three-dimensional systems, vi-
bration exciters with limited power, experimental anal-
ysis of the effect of self-orientation – all these are def-
inite objects of future research.
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