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Solutions of the KdV equation are derived by the algebraic operator method based on
generalized operators of differentiation. The algebraic operator method based on the
generalized operator of differentiation is exploited for the derivation of analytic solutions
to the KdV equation. The structure of solitary solutions and explicit conditions of existence
of these solutions in the subspace of initial conditions are derived. It is shown that special
solitary solutions exist only on a line in the parameter plane of initial and boundary
conditions. This new theoretical result may lead to important findings in a variety of
practical applications.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Korteweg-de Vries equation takes the form
@w
@s
� 6w

@w
@z
þ @

3w
@z3 ¼ 0: ð1Þ
The KdV Eq. (1) was discovered in 1895 by Korteweg and de Vries [10]. This equation is a paradigmatic partial differential
equation in nonlinear physics. It models one-dimensional shallow water waves with small but finite amplitudes. It has also
been used to describe a number of important physical phenomena such as solitons, magnetohydrodynamics waves in warm
plasma, acoustic waves in anharmonic crystals, ion-acoustic waves [33,36,1,17,3,24].

Eq. (1) is integrable and the Cauchy problem for this equation can be solved [7,14,9]. This equation has soliton, rational
and elliptic solutions [2,27].

A suitable modification of the inverse scattering transform helps to shown that under the KdV flow an initial profile sup-
ported on ð�1;0Þ instantaneously evolves into a meromorphic function with no poles on the real line [28].

Inverse scattering transform method is exploited for explicit computation of the shapes and the speeds of the asymptotic
solitons for the KdV equation for several types of linearizable boundary conditions in [6].
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Many different methods for the construction of exact solutions of nonlinear evolution equations have been established
and developed. The inverse scattering transform [1], the Hirota’s bilinear operators [9], the Jacobi elliptic function expansion
[16], the Darboux transformation [19], the Backlund transformation method [34] are successfully used to construct analyt-
ical solutions of nonlinear evolutions. A number of methods based on the extensive use of symbolic computations have been
developed during the last decades. Homogeneous balance method [32], the Exp-function method [8,4], the tanh method
[18,25] and its various extensions [5,15,31], the (G0/G) expansion method [38], the auxiliary (or subsidiary) ordinary differ-
ential equation method [35,30,37] are successfully used to solve high-dimensional nonlinear evolutions in mathematical
physics with the help of symbolic computation. The key idea of most of these methods is that the traveling wave solution
of a complicated nonlinear evolution equation can be guessed (supposed) as a polynomial (or a ratio of polynomials) of stan-
dard functions whose argument is a traveling wave term. The degree of the polynomial can be determined by considering
homogeneous balance between the highest derivatives and nonlinear terms in the nonlinear evolution equation considered.
Nevertheless, it can be noted that a straightforward application of these methods has attracted a considerable amount of
criticism [12,23,11,22,13,26].

1.1. The purpose of the paper

The main objective of this paper is to show that well-known solitary solutions to KdV equation do not hold for all initial
conditions. Formal operator techniques based on the generalized differential operator are used for the KdV equation to
derive solutions expressed in a ratio of finite sums of standard functions [21]. We use an analytical criterion based on the
concept of H-ranks and determine if a solution of the KdV equation can be expressed in an analytical form comprising
standard functions. The employment of this criterion does not only give an answer to the above-stated question but gives
the structure of the solution so that one does not have to guess what the form of the solution is. The load of symbolic
calculations is brought before the structure of the solution is identified. This is in contrary to the methods described in
[32,8,4,18,25,5,15,31,38,35,30,37] where the structure of the solution is first proposed, and then symbolic calculations are
exploited for the identification of parameters.

We perform well-known transformations [29] before commencing the analysis of Eq. (1). The change of variables based
on the existence of a propagating wave w z; sð Þ ¼ x z� rsð Þ (where r is the constant wave speed) yields an ordinary differen-
tial equation:
� r þ 6xð Þx0x þx000xxx ¼ 0; ð2Þ
where the prime mark stands for a derivative of x with respect to the variable of the propagating wave x ¼ z� rt. Integration
of Eq. (2) with respect to x yields:
� r þ 3xð Þxþx00xx ¼ 3C; C ¼ const: ð3Þ
Eq. (3) which can be rewritten in the following form:
x00xx ¼ c2 x�x1ð Þ x�x2ð Þ; x1;x2; c 2 C; ð4Þ
where x1;2 ¼ � r
6�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

36� C
q

; c2 ¼ 3. We will seek structural solutions of Eq. (4) using algebraic operator techniques.
Elliptic function solutions (doubly periodic solutions) play an important role in studying exact solutions of nonlinear

wave equations. Particularly, the Weierstrass elliptic function expansion method is used to seek doubly periodic solutions
of the KdV equation, the Generalized KdV equation and the modified KdV equation in [39–42].

Note that Eq. (4) is the simple reduction of the KdV equation in the traveling waves. Eq. (4) can be integrated once more,
and the resulting differential equation can be solved in terms of Weierstrass elliptic functions. Such a straightforward
integration produces the solitary solution but does not produce conditions of its existence in the space of initial conditions
[39–42]. The main goal of this paper is to demonstrate that algebraic operator techniques can simultaneously produce sol-
itary solutions and conditions of their existence. And even though the KdV equation is one of the most studied nonlinear
differential equations, we argue that conditions of existence of solitary solutions to the KdV equation cannot be produced
by the Weierstrass elliptic function expansion method; formal application of algebraic operator techniques is necessary
for that purpose.

1.2. Outline

The paper is organized as follows. Initial definitions and concepts used in the search of structural solutions are given in
Section 2; the special solutions of KdV type ordinary differential equation are derived in Section 3; results of computational
experiments are discussed in Section 4 and concluding remarks are given in Section 5.

2. Preliminaries

Several definitions and statements which will be exploited in the process of the search of special solutions of the KdV
equation are concisely presented in this section.
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2.1. Functions and their extensions

Functions of two types are used in this paper. Functions of the first type pj ¼ pj c; s0; . . . ; sn�1ð Þ describe the mapping
pj : Ij � Is0 � � � � � Isn�1 ! R; where Ij; Is0 ; . . . ; Isn�1 � R are variation intervals (or unions of intervals) of variables
c; s0; . . . ; sn�1 2 R. These functions are differentiable any number times in respect of every variable. It can be noted that
the identification of variation intervals (or unions of intervals) is a straightforward task whenever the expression of
pj c; s0; . . . ; sn�1ð Þ is given explicitly. For example, the function
p c; s0ð Þ ¼ 1
c 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� � ð5Þ
is defined and differentiable any number of times in respect of j and s0 when c 2 �1; 0ð Þ
S

0;þ1ð Þ and s0 2 �1; 1
4

� �
(the

principal square root is considered in (5)). The analysis of functions of the first type is not the objective of this paper, but
we will consider only such functions pj ¼ pj c; s0; . . . ; sn�1ð Þ that intervals Ij; Is0 ; . . . ; Isn�1 exist and are not empty sets. The
set of functions of the first type is denoted as Uj;s0 ;s1 ;...;sn�1 .

Functions of the second type are constructed from functions of the first type using the following algorithm.

(i) Construct the power series:
f0 x; c; s0; . . . ; sn�1ð Þ ¼
Xþ1
j¼0

xj

j!
pj c; s0; . . . ; sn�1ð Þ; ð6Þ
such that its domain of convergence xj j < R 6 þ1 is nonempty and the convergence radius R depends on the properties of
functions of the first type {pj ¼ pj c; s0; . . . ; sn�1ð Þ; j ¼ 0;1;2; . . .}.

(ii) Extend the function f0 x; c; s0; . . . ; sn�1ð Þ to a wider domain (if it is possible) using classical extension techniques. The
extended function f x; c; s0; . . . ; sn�1ð Þ is denoted as the second type function.

For example, the series
f0 x; c; s0ð Þ ¼
Xþ1
j¼0

xj

j!
j!

1
c 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� � !j

0@ 1A ¼Xþ1
j¼0

x
c 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� � !j
can be extended to a function
f x;j; s0ð Þ ¼
c 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� �

c 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� �

� x
for s0 2 �1; 0ð Þ and c 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� �

– x. From now on we will use the equality
Xþ1
j¼0

xj

j!
j!

1
c 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� � !j

0@ 1A ¼ c 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� �

c 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s0
p� �

� x
assuming that the transformation into the extended function does not cause any misunderstandings and will not specify do-
mains for x; c and s0.

Other forms of the second type functions can be used. Typical cases (structures of f0) are listed below:
f0 x; c; s0; . . . ; sn�1ð Þ ¼
Xþ1
j¼0

x� cð Þj

j!
pj c; s0; . . . ; sn�1ð Þ;

f0 c; s0; . . . ; sn�1ð Þ ¼
Xþ1
j¼0

cj

j!
pj c; s0; . . . ; sn�1ð Þ:
It can be noted that it is not necessary to introduce the function norm (neither for the first type functions nor for the sec-
ond type functions) in the process of the construction of analytic solutions of nonlinear ordinary differential equations.

The set of extended functions is denoted as Ux;c;s0 ;...;sn�1 (Uc;s0 ;...;sn�1 � Ux;c;s0 ;...;sn�1 ).
We will use several standard functions for the construction of generalized solutions of differential equations:
y1 xð Þ ¼
Xþ1
j¼0

xj

j!
; y1 xð Þ ¼ exp xð Þ; x 2 R; y1 xð Þð ÞðnÞx ¼ exp xð Þ: ð7Þ

y2 xð Þ ¼
Xþ1
j¼0

xj; xj j < 1; y2 xð Þ ¼ 1
1� x

; x – 1; y2 xð Þð ÞðnÞx ¼
n!

1� xð Þ1þn : ð8Þ
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2.2. The H-rank of the sequence and the characteristic Hankel equation

Let pj; j 2 Z0
� �

is a sequence of numbers or functions. Then the corresponding sequence of Hankel matrixes H1;H2; . . .ð Þ
reads:
H1 :¼ p0½ �; H2 :¼
p0 p1

p1 p2

� �
; H3 :¼

p0 p1 p2

p1 p2 p3

p2 p3 p4

264
375; . . . ð9Þ
and the sequence of determinants of these matrixes is denoted as dk; k 2 Nð Þ; where dk :¼ det Hk.

Definition 1. A sequence pj; j 2 Z0

� �
has an H-rank equal to m if dm – 0 but dmþn ¼ 0 for all n 2 N. The following notion will

be used throughout the manuscript:
Hr pj; j 2 Z0
� �

¼ m: ð10Þ

Let Eq. (10) holds for a sequence pj; j 2 Z0

� �
. Then it is possible to construct a characteristic H-equation [20]:
det

p0 p1 � � � pm

p1 p2 � � � pmþ1

� � �
pm�1 pm � � � p2m�1

1 q � � � qm

26666664

37777775 ¼ 0: ð11Þ
Definition 2. Roots q1;q2; . . . ;qm of the characteristic H-Eq. (11) are H-eigenvalues of the sequence pj; j 2 Z0

� �
.

Theorem 1. Let the characteristic H-Eq. (11) has n different H-eigenvalues q1;q2; . . . ;qn; n 6 mð Þ; the recurrence indexes of qk

are mk; mk 2 Nð Þ; m1 þm2 þ � � � þmn ¼ m. Then,
pj ¼
Xn

r¼1

Xmr�1

k¼0

lrk

j

k

	 

qj�k

r ; j ¼ 0;1;2; . . . ; ð12Þ
where lrk are appropriate coefficients; j
k

	 

:¼

j!
r! j�kð Þ! when j P k;

0 when j < k;

�
here it is assumed that 00 :¼ 1; 0 � �1ð Þ :¼ 0.

The proof of Theorem 1 is given in [20]. It can be noted that coefficients lrk can be determined solving a system of linear
algebraic equations which consists from m different equalities of Eq. (12) (H-eigenvalues q1;q2; . . . ;qn and their recurrence
indexes m1;m2; . . . ;mn must be determined beforehand). The simplest system is produced when the first m equalities of Eq.
(12) are selected (for j ¼ 0;1; . . . ;m� 1). But the same results can be produced for j ¼ j1; j2; . . . ; jm where
0 6 j1 < j2 < � � � < jm < þ1. Moreover, this system of linear algebraic equations has a unique solution.

Definition 3. A sequence pj; j 2 Z0

� �
whose elements pj; j ¼ 0;1;2; . . . can be expressed in the form (12) is called an

algebraic progression.
2.3. Structures of analytical solutions

Let two polynomials are defined as follows:
P1 c; sð Þ ¼
X

k;l2Z0

aklcksl; P2 c; s; tð Þ ¼
X

k;l;r2Z0

bklrcksltr; ð13Þ
where akl and bklr are fixed real (or complex) numbers; c; s and t are real (or complex) variables. Then it is possible to con-
struct two ordinary differential equations with initial conditions:
y0x ¼ P1ðx; yÞ; ð14Þ
where y ¼ yðx; c; sÞ; yðc; c; sÞ ¼ s; and
x00xx ¼ P2 x;x;x0x
� �

; ð15Þ
where x ¼ x x; c; s; tð Þ; x c; c; s; tð Þ ¼ s; x0x x; c; s; tð Þ
��
x¼c ¼ t.

Usual differentiation operations in respect of variables x; c; s and t are denoted by symbols Dx;Dc;Ds and Dt . Then it is pos-
sible to construct generalized differential operators Dy and Dx in respect of variablesy and x [22]:
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Dx :¼ Dc þ tDs þ P2 c; s; tð ÞDt : ð17Þ
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Definition 4. Dy is the generalized differential operator of the differential equation (14) and Dx is the generalized
differential operator of the differential equation (15).

Generalized differential operators Dy and Dx can be exploited to construct analytical solutions y x; c; sð Þ and x x; c; s; tð Þ of
differential equations (14) and (15) [22]:
y ¼
Xþ1
j¼0

x� cð Þj

j!
Dj

ys; ð18Þ

x ¼
Xþ1
j¼0

x� cð Þj

j!
Dj

xs; ð19Þ
which converge in some nonempty surrounding x� cj j < e in the complex plane. Furthermore, functions y ¼ y x; c; sð Þ and
x ¼ x x; c; s; tð Þ can be extended into the whole complex plane with the exception of possible singular points.

Definition 5. Terms Dj
ys and Dj

xs are denoted as coefficients of solutions of differential equations (14) and (15).
2.4. Structures of analytical algebraic solutions

It is important for many engineering applications to obtain analytical – algebraic representations of solutions of ordinary
differential equations in the following form:
y ¼
Xm

r¼1

lrfr x� cð Þqrð Þ; ð20Þ
where m is a finite constant; m 2 N; lr ; fr and qr are ordinary functions. We will use the H-rank and associated H-eigen-
values for the construction of special analytical – algebraic solutions.

Given the differential equation (14), let us denote:
Dj
ys :¼ pj; j ¼ 0;1;2; . . . ð21Þ
Then the following theorem holds true.

Theorem 2. The following three following statements are equivalent:

(i) pj ¼ j!
Pm

r¼1

Pmr�1
k¼0 lrk

j
k

	 

qj�k

r ; j ¼ 0;1;2; . . .where qk; lrk 2 Fc;s; m;mr ¼ 1;2; . . .; moreover lr; mr�1ð Þ – 0.

(ii) Hr pj

j! ; j 2 Z0

� �
¼
Pn

r¼1mr and the recurrence indexes of roots qr 2 Fcs of the characteristic H-equation are mr ; r ¼ 1;2; . . . ;n.

(iii) There exist functions lrk 2 Fcs; qr 2 Fcs; r ¼ 1;2; . . . ;m; k ¼ 0;1;2; . . . ;mr � 1; m;mr 2 N which satisfy following
conditions:

(a) lr mr�1ð Þ – 0; r ¼ 1;2; . . . ;m; moreover
Pm

r¼1lr0 ¼ s;

(b) Dyqr ¼ q2
r ;

(c) Dylrk ¼ rk mr � 2k� 1ð Þqrlrk þ rðkþ1Þmr � klr kþ1ð Þ,
where rkl :¼
1; when k 6 l;

0; when k > l;

�
k; l 2 Z0:
The rigorous proof of the Theorem 2 is given in [21]. It can be noted that analogous theorems hold for the differential
equation (15) and differential equations of the same type.

Corollary 1. Let the statement (i) of the Theorem 2 holds. Then the solution (18) of the differential equation (14) can be expressed
in the following form:
y ¼
Xþ1
j¼0

x� cð Þj

j!
j!
Xm

r¼1

Xmr�1

k¼0

lrk

j

k

	 

qj�k

r ¼
Xm

r¼1

Xmr�1

k¼0

lrk
x� cð Þk

k!

Xþ1
j¼0

jþ kð Þ!
j!

qr x� cð Þð Þj ¼
Xm

r¼1

Xmr�1

k¼0

lrk x� cð Þk

1� qr x� cð Þð Þkþ1 ; ð22Þ
because 1� zð Þ� kþ1ð Þ ¼
Pþ1

j¼0
jþ k

j

	 

zj when zj j < 1.
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2.5. Expanding and narrowing an ordinary differential equation

Let two differential equations are given:
y0x ¼ P1 x; yð Þ; ð23Þ
where y ¼ y x; c; sð Þ; y c; c; sð Þ ¼ s with the generalized operator of differentiation:
Dy :¼ Dc þ P1 c; sð ÞDs ð24Þ
and
x00xx ¼ P2 x;xð Þ; ð25Þ
where x ¼ x x; c; s; tð Þ; x c; c; s; tð Þ ¼ s; x0x x; c; s; tð Þ
��
x¼c ¼ t with the generalized operator of differentiation:
Dx :¼ Dc þ tDs þ P2 c; sð ÞDt: ð26Þ
Theorem 3. If the equality
@P1 c; sð Þ
@c

þ P1 c; sð Þ @P1 c; sð Þ
@s

¼ P2 c; sð Þ ð27Þ
holds, then
Dj
ys ¼ Dj

xs
���

t¼P1 m;sð Þ
; j ¼ 0;1;2; . . . ð28Þ
and, moreover, the following equality holds true:
x x; c; s; P1 c; sð Þð Þ ¼ y x; c; sð Þ: ð29Þ

Rigorous proof of Theorem 2 is given in [23].
Definition 6. If Eq. (27) holds, then the differential equation (23) is the narrowed differential equation of (25), and the
differential equation (25) is the expanded differential equation of (23).
2.6. Changing the independent variable of a differential equation

Let the following differential equation is given:
y0x ¼ P1 yð Þ; ð30Þ
where y :¼ y xð Þ ¼ y x; c; sð Þ; y c; c; sð Þ ¼ s. The independent variable x can be changed using the substitution [22]:
z :¼ exp axð Þ; x ¼ 1
a

ln z: ð31Þ
Then,
y ¼ y xð Þ ¼ y
1
a

ln z
	 


:¼ ŷ zð Þ ¼ ŷ exp axð Þð Þ :¼ ŷ ð32Þ
and, furthermore,
y0x ¼ azŷ0z; ĉ :¼ exp acð Þ: ð33Þ
Thus, the differential equation (30) is transformed to the following differential equation:
ŷ0z ¼
1
az

P1 ŷð Þ; ð34Þ
where ŷ ¼ ŷ z; ĉ; sð Þ; ŷ ĉ; ĉ; sð Þ ¼ s. The relationship between the solutions of differential equations (30) and (34) reads:
y x; c; sð Þ ¼ ŷ exp axð Þ; exp acð Þ; sð Þ: ð35Þ
Definition 7. The differential equation (34) is the image differential equation of the differential equation (30).
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2.7. The substitution of dependent variable for linear differential equation

Let the differential equation (14) with corresponding initial conditions be given. Then the function x̂ ¼ x̂ x; c; ŝ; t̂
� �

is de-
scribed using following expressions
x :¼ ax̂þ b; x̂ ¼ 1
a

x� bð Þ; ð36Þ
where a; b 2 C (a – 0) is the linear substitution from dependent variable x to dependent variable x̂.
Since expressions x0x ¼ ax̂0x; ax̂0x ¼ 1

a x
0
x; x00xx ¼ ax̂00xx; x̂00xx ¼ 1

a x
00
xx hold true, the differential equation x00x ¼ bP2 x; x̂; x̂0x

� �
with initial conditions x̂ c; c; ŝ; t̂

� �
¼ ŝ and x̂0x c; c; ŝ; t̂

� ���
x¼c ¼ t̂ (bP2 c; ŝ; t̂

� �
¼ 1

a P2 c; aŝþ b; a t̂
� �

) is obtained. Relationships be-

tween initial conditions read s ¼ aŝþ b; t ¼ at̂ or ŝ ¼ 1
a s� bð Þ; t̂ ¼ 1

a t.
Moreover,
x̂ x; c; ŝ; t̂
� �

¼ 1
a

x x; c; aŝþ b; at̂
� �

� b
� �

;

or
x x; c; ŝ; t̂
� �

¼ ax̂ x; c;
1
a

s� bð Þ;1
a

t
	 


þ b:
Note that Dx̂ ¼ Dc þ tDŝ þ P2 c; ŝ; t̂
� �

Dt̂ and x̂ ¼
Pþ1

j¼0
x�cð Þj

j!
bDj

x̂ ŝ.

3. Solution of the KdV type ordinary differential equation by the generalized operator method

3.1. The narrowed KdV equation

As noted in the Introduction, we will consider the following KdV type ordinary differential equation:
x00xx ¼ c2 x�x1ð Þ x�x2ð Þ ð37Þ
with x ¼ x x; c; s; tð Þ and x c; c; s; tð Þ ¼ s; x0x x; c; s; tð Þ
��

x¼c ¼ t; where c, x1;x22C; c – 0 are parameters of the differential
equation.

Linear substitution (36) transforms differential equation (37) to the following differential equation
ax̂00xx;¼ c2 ax̂þ b�x1ð Þ ax̂þ b�x2ð Þ:
That is equivalent to
x̂00xx;¼ ĉ2 x̂� x̂1ð Þ x̂� x̂2ð Þ: ð38Þ
Eq. (38) is the KdV type differential equation where parameters read:
ĉ2 ¼ c2a; x̂1 ¼
x1 � b

a
; x̂2 ¼

x2 � b
a

: ð39Þ
Eq. (37) helps to find solutions of KdV type differential equations when parameters of this equation are associated by rela-
tionship (39).

The narrowed differential equation of Eq. (37) reads [23]:
y0x ¼ P1 x; yð Þ; y ¼ y x; c; sð Þ; y c; c; sð Þ ¼ s; ð40Þ
the expanded differential equation of Eq. (40) is Eq. (37) [23]. It follows from Eq. (37) that P2 c; sð Þ ¼ c2 s�x1ð Þ
s�x2ð Þ ¼ P2 sð Þ. Thus it is possible to construct the simplest narrowed equation by assuming P1 c; sð Þ ¼ P1 sð Þ. The equality

(27) yields the relationship P1 sð Þ � P1 sð Þð Þ0s ¼ P2 sð Þ; the first integral of the latter produces:
P1 sð Þð Þ2 ¼ 2c2
Z

s�x1ð Þ s�x2ð Þds� C0

	 

; ð41Þ
where C0 2Cis a fixed constant. Thus, the narrowed KdV equation takes the form:
y0x
� �2 ¼ 2

3
c2 y� y1ð Þ y� y2ð Þ y� y3ð Þ; ð42Þ
where
s� y1ð Þ s� y2ð Þ s� y3ð Þ ¼ s3 � 3 x1 þx2ð Þ
2

s2 þ 3x1x2s� 3C0: ð43Þ
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Thus, the narrowed differential equation (42) can be expanded to KdV Eq. (32) for every C0; C0 2C. Moreover, the general
solution of the differential (42) y ¼ y x; c; sð Þ is also a solution of KdV Eq. (37).

Note that it is possible to obtain Eq. (42) from (37) via multiplying (37) by x0x and integrating ones without any formulas
for P1 and P2. Moreover, Eq. (42) can be reduced to equation which is solvable in terms of Weierstrass elliptic functions. But
the presented transformations are necessary to illustrate the functionality of the proposed technique which helps to derive
explicit conditions of the existence of solitary solutions in the space of initial conditions and system parameters.

3.2. Conditions when the solution of KdV equation can be expressed in a ratio of sums of exponential functions

We will find such values of the constant C0 with which solutions of the differential equation (42) y ¼ y x; c; sð Þ can be ex-
pressed in a ratio of sums of exponential functions. The image differential equation of (42) is constructed for that purpose
[22]:
azŷ0z
� �2 ¼ 2

3
c2 ŷ� y1ð Þ ŷ� y2ð Þ ŷ� y3ð Þ; ð44Þ
where ŷ ¼ ŷ z; ĉ; sð Þ; ŷ ĉ; ĉ; sð Þ ¼ s and z :¼ eax; ĉ ¼ eac . Then, the generalized differential operator [22,21] reads:
Dŷ :¼ Dĉ þ
ffiffiffi
2
3

r
c
aĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y1ð Þ s� y2ð Þ s� y3ð Þ

p
� Ds: ð45Þ
Let p̂j :¼ Dj
ŷs; j ¼ 0;1;2; . . .. The sequence of Hankel matrixes [22] takes the following form:
Hm :¼

p̂0
0!

p̂1
1!

. . . p̂m�1
m�1ð Þ!

p̂1
1!

p2
2!

. . . p̂m
m!

. . . . . . . . . . . .
p̂m�1
m�1ð Þ!

p̂m
m!

. . . p̂2m�2
2m�2ð Þ!

2666664

3777775; m ¼ 1;2;3; . . . ð46Þ
Symbolic computations help to prove that det H4 ¼ 0 when y1 ¼ y2 :¼ y0; y0 – y3 and the following equality holds (Appendix
A):
3a2 ¼ 2c2 y0 � y3ð Þ: ð47Þ
The differential equation (44) takes the following form when the equality (47) holds:
y0 � y3ð Þ zŷ0z
� �2 ¼ ŷ� y0ð Þ2 ŷ� y3ð Þ ð48Þ
and its narrowed differential equation reads:
3 y0x
� �2 ¼ 2c2 y� y0ð Þ2 y� y3ð Þ: ð49Þ
Then, relationships in Eqs. (43) and (49) yield:
2y0 þ y3 ¼ 3 x1þx2ð Þ
2

y2
0 þ 2y0y3 ¼ 3x1x2

y2
0y3 ¼ 3C0:

8><>: ð50Þ
Eq. (50) produces following relationships between y0; y3 and x1; x2:
y0 ¼ x1; y3 ¼
3x2 �x1

2
; c ¼ 3x2x2

1 �x3
1

3
;

y0 � y3 ¼
3
2

x1 �x2ð Þ; s� y3 ¼
1
2

2s� 3x2 þx1ð Þ: ð51Þ
Thus two narrowed KdV differential equations are produced:
3 y0x
� �2 ¼ 2c2 y�xið Þ2 y� 3xj �xi

2

	 

; i; j ¼ 1;2; i – j; ð52Þ
whose solutions could be expressed in a ratio of sums of exponential functions (what is the objective of the next section).

3.3. The solution of the narrowed differential equation

The generalized operator of differentiation of the narrowed differential equation of (48) reads:
Dŷ ¼ Dĉ þ
s� y0

ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
Ds: ð53Þ
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Then, the Hankel characteristic equation [22] takes the form:
det

p̂0
0!

p̂1
1!

p̂2
2!

p̂3
3!

p̂1
1!

p̂2
2!

p̂3
3!

p̂4
4!

p̂2
2!

p̂3
3!

p̂4
4!

p̂5
5!

1 q̂ q̂2 q̂3

266664
377775
���������� y1 ¼ y2 :¼ y0

3a2 � 2c2 y0 � y3ð Þ ¼ 0

¼ 0 ð54Þ
and its roots are (Appendix B):
q̂1 ¼ 0; q̂2 ¼ q̂3 ¼
1
2ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
� 1

	 

: ð55Þ
It can be noted, that Dŷq̂j ¼ q̂2
j ; j ¼ 1;2;3 (Appendix C).

The linear algebraic system for the determination of lj; j ¼ 1;2;3 takes the following form when y0 ¼ y1 ¼ y2 and Eq. (47)
holds true [22]:
l1 þ l2 ¼ p̂0

q̂2l2 þ l3 ¼ p̂1

q̂2
2l2 þ 2q̂2l3 ¼ 1

2 p̂2

8><>: ð56Þ
and its solution reads:
l1 ¼ y0; l2 ¼ s� y0; l3 ¼
s� y0

2ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
þ 1

	 

: ð57Þ
We will prove that expressions of lj; j ¼ 1;2;3 satisfy following equalities (Appendix D):
Dŷl1 ¼ q1l1; Dŷl2 ¼ q2l2 þ l3; Dŷl3 ¼ 3q2l3: ð58Þ
Thus,
1
j!

Dj
ŷs ¼ l1q̂

j
1 þ l2q̂

j
2 þ l3jq̂j�1

2 ; ð59Þ
the proof is given in (Appendix E). Then, according to Theorem 3, Corollary 1 and Eq. (59), the solution of the differential
equation (48) reads:
ŷ z; ĉ; sð Þ ¼ y0 þ
4 s� y0ð Þ y0 � y3ð Þzĉffiffiffiffiffiffiffiffiffiffiffiffiffi

s� y3
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p� �

ĉ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p� �

z
� �2 ; ð60Þ
the detailed derivation is given in (Appendix F). Finally, the structure of the solution of the narrowed differential equation
(49) reads:
y x; c; sð Þ ¼ y0 þ
4 s� y0ð Þ y0 � y3ð Þ exp

ffiffi
2
3

q
c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p

x� cð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p� �

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p� �

exp
ffiffi
2
3

q
c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p

x� cð Þ
� �� �2 : ð61Þ
It can be noted that Eq. (61) represents the general structure of the solution only. Concrete special solutions are enumerated
at the beginning of the next section when all possible combinations of signs of corresponding square roots are placed
accordingly.

3.4. Solutions of the KdV type ordinary differential equation and conditions of their existence

Relationships (51) yield special solutions yij; i; j ¼ 1;2; i – j, of the narrowed KdV Eq. (52) and (37):
x x;c;s; � 1ffiffiffi
3
p c s�xrð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþxr�3xj

q	 
	 

¼yrj x;c;sð Þ

¼xrþ
12 xr�xj
� �

s�xrð Þexp c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixr�xj
p

x�cð Þ
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 xr�xj
� �q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s�3xjþxr

p� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 xr�xj
� �q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s�3xjþxr

p� �
exp c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixr�xj

p
x�cð Þ

� �� �2 ; r;j¼1;2; r – j; ð62Þ
this solution exists on the curve
3t2
rj ¼ c2 s�xrð Þ2 2s� 3xj þxr

� �
; r; j ¼ 1;2; r – j: ð63Þ
And though it can be observed that the obtained solution (62) has the well-known form
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1= c1 sinh axþ c2 cosh axð Þ2 þ c3;
the explicit expression of the curve (63) is a new and important finding describing the existence of solitary solutions in the
space of initial conditions and system parameters.

As mentioned in the Introduction, explicit expressions of analytic solutions of KdV equation can be found using different
methods and techniques based on the proposition that the structure of the solution takes certain form and then using sym-
bolic computations to identify the necessary values [32,8,4,18,25,5,15,31,38,35,30,37]. But we argue that conditions of the
existence of these special solutions in the space of the system’s parameters can not be derived using those methods.

Note that another differential equations of KdV type can be obtained using substitutions (35) and relationships (39) for
parameters c; x1; x2 and ĉ; x̂1; x̂2.

3.5. Several comments on special solutions of the KdV type ordinary differential equation

Special solutions of the KdV Eq. (62) exist and have sense not only when parameters c; x1 and x2 are complex numbers,
but when the parameter of the initial condition s is a complex number also. Thus, in general, solutions (Eq. 62) are complex
functions of the real variable x:
yk ¼ uk x; c; sð Þ þ ivk x; c; sð Þ; ð64Þ
where k ¼ 1;2; i2 ¼ �1. Then Eq. (37) yields a system of KdV differential equations whose special solutions are functions
uk ¼ uk x; c; sð Þ and vk ¼ vk x; c; sð Þ; k ¼ 1;2. But a more deep analysis of solutions uk and vk is out of scope of interests in this
paper. In general, the independent variable x can be a complex variable then; complex variable functions theory methods
could be exploited for the analysis of special complex solutions.

In this paper we will introduce the limitation that c;x1; x2 and s are real numbers. It can be noted that functions yk in Eq.
(64) are complex functions even if the aforementioned limitation is in force; special solutions satisfy the following system of
KdV differential equations:
ukð Þ00xx ¼ c2 uk �x1ð Þ uk �x2ð Þ � v2
k

� �
;

vkð Þ00xx ¼ c2 2uk � x1 þx2ð Þð Þvk;

(
ð65Þ
where k ¼ 1;2 and functions uk; vk satisfy initial conditions:
uk m; m; sð Þ ¼ s; vk m; m; sð Þ ¼ 0: ð66Þ
Functions uk and vk are structural solutions of the system of differential equation (65). Therefore, their first derivatives must
fulfill the following equalities defined by Eq. (63):
d uk x; m; sð Þð Þ
dx

����
x¼c

¼ ak;
d vk x; m; sð Þð Þ

dx

����
x¼c

¼ bk; ð67Þ
where tk ¼ ak þ ibk; k ¼ 1;2; ak and bk are real numbers computed from the equations of curves defined by Eq. (63).

4. Classical KdV solitary solutions and numerical experiments

Let us assume that x1 ¼ 0 and x2 ¼ 2
3 s. Then, Eq. (62) yields:
y11 x; c; sð Þ ¼ 4s exp c
ffiffiffiffiffiffiffiffiffiffi�x2
p

x� cð Þð Þ
1þ exp c

ffiffiffiffiffiffiffiffiffiffi�x2
p

x� cð Þð Þð Þ2
¼ s � sech2 c

2
ffiffiffiffiffiffiffiffiffiffi
�x2
p

x� cð Þ
� �

: ð68Þ
But if x1 ¼ 0 the second root must be equal to x2 ¼ � r
3 (Eq. (4)); also c2 ¼ 3. Then,
y11 ¼ �
r
2
� sech2

ffiffiffi
r
p

2
x� cð Þ

	 

¼ � r

2
� sech2

ffiffiffi
r
p

2
z� rs� cð Þ

	 

; ð69Þ
what is a solution of the KdV equation describing solitary waves observed by Rassel in 1834.
It is important to note, that solutions for other values on x1 and x2 may not exist in the whole plane of parameters s and

t. We argue that these conditions of existence can not be determined using methods based on the principle when the struc-
ture of the solution is initially supposed and then symbolic computations are used for the determination of appropriate coef-
ficients. We have shortly discussed the limitations of these methods in the Introduction. We will now demonstrate that
solutions for the other set of parameters x1 and x2 are limited by their conditions of existence.

Let us select x1 ¼ 0:5; x2 ¼ 3 and c2 ¼ 3 for example. Conditions of existence of the solution y21 (Eqs. (62) and (63)) are
shown in Figs. 1 and 2. Next, we integrate the differential equation x00xx ¼ 3 x� 0:5ð Þ x� 3ð Þ using numerical time marching
techniques assuming different initial conditions s and t. At the same time we calculate numerical values of the solution in Eq.
(62) and compute cumulative errors between the numerical and analytical solutions (the detailed procedure for the calcu-
lation of errors is described in [23]). We limit the analysis to the real solutions only, so we visualize errors in the region



Fig. 1. Conditions of existence of the solution y21 in the parameter plane of initial conditions; x1 ¼ 0:5; x2 ¼ 3; c2 ¼ 3 (real parts of t21 are represented as
solid lines).

Fig. 2. Conditions of existence of the solution y21 in the parameter plane of initial conditions; x1 ¼ 0:5; x2 ¼ 3; c2 ¼ 3 (imaginary parts of t21 are
represented as dashed lines).

Fig. 3. The surface of errors computed as differences between 100 steps of the numerical solution of the differential equation x00xx ¼ 3 x� 0:5ð Þ x� 3ð Þ and
the analytic solution y21 at x1 ¼ 0:5; x2 ¼ 3; c2 ¼ 3 in the parameter plane of initial conditions; errors greater that 70 are truncated to 70 for clarity.
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s P �0:75 only. The produced trench in the surface of cumulative errors (Fig. 3) accurately follows one of the branches of the
solution existence graph in Fig. 1.

5. Concluding remarks

The proposed algebraic operator method for the construction of solitary solutions has a number of important and advan-
tageous features:

(i) This method allows determining the existence of solitary solutions (a solitary solution does exist if the H-rank of the
solution to the image differential equation does exist).

(ii) This method does not require to guess (or to suppose) the structure of the solitary solution (the structure of the sol-
itary solution is generated automatically).

(iii) This method does generate not only the structure of the solitary solution. Explicit conditions of the existence of these
solutions in the subspace of systems parameters and initial conditions are also generated automatically.

We used the KdV equation as a typical differential equation for the demonstration of the functionality of the proposed
approach. It is true that the KdV equation is one of the most studied nonlinear differential equations. But such a choice helps
to reveal the power of the proposed method since it is possible to make straightforward comparisons with existing
techniques.
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We show that special solitary solutions of the KdV equation exist only on a line in the parameter plane of initial condi-
tions – if only that solution does not coincide with the solution expressible in the sech function. This is a new theoretical
result which may lead to important findings in a variety of practical applications where the generation or manipulation with
solitary waves could be considered.
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Appendix A

The notion
1
b

:¼
ffiffiffi
2
3

r
c
a

ðA:1Þ
is introduced before computing the expression of det H4. Then, the generalized operator of differentiation defined in Eq. (45)
takes the form:
Dŷ ¼ Dĉ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y1ð Þ s� y2ð Þ s� y3ð Þ

p
bĉ

Ds ðA:2Þ
and coefficients p0; p1; . . . ; p6 read:
p0 ¼ s; p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y1ð Þ s� y2ð Þ s� y3ð Þ

p
bĉ

; . . . ðA:3Þ
Symbolic computations are exploited to determine coefficients p0; p1; . . . ; p6; we omit expressions of higher coefficients
for the brevity. Unfortunately, it turns out that the expression of higher coefficients is lengthy and ordinary symbolic com-
putation systems can not derive the explicit expression of det H4 when common personal computers are used. Thus, we form
a subsequence p1; p2; . . . ; p5ð Þ and compute det eH3 instead, where
eH3 ¼

p1
1!

p2
2!

p3
3!

p2
2!

p3
3!

p4
4!

p3
3!

p4
4!

p5
5!

264
375: ðA:4Þ
Now symbolic computations yield:
det eH3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y1ð Þ s� y2ð Þ s� y3ð Þ

p
2160b9ĉ9

X4

k¼0

Ak y1; y2; y3;bð Þsk; ðA:5Þ
where
A4 y1; y2; y3;bð Þ ¼ 27
16

y2
1 þ y2

2 þ y2
3 � y1y2 � y1y3 � y2y3 � b4� �

;

A3 y1; y2; y3;bð Þ ¼ 1
4

y3
1 þ

1
4

6b2 � 15 y2 þ y3ð Þ
� �

y2
1 þ

1
4
�15y2

2 þ 87y3 � 6b2� �
y2 þ 9 b2 þ y3

� �
b2 � 5

3
y3

	 
	 

y1

þ 1
4

y2 þ y3 þ b2� �
y2

2 þ 5b2 � 16y3

� �
y2 þ b2 þ y3

� �
y3 þ 4b2� �� �

;

A2 y1; y2; y3;bð Þ ¼ �1
4

y4
1 þ

1
8

y2 þ y3 � 4b2� �
y3

1 þ
1
8

87y2
2 � 87y2y3 þ 87y2

3 � 18b4� �
y2

1

þ 1
8

y3
2 � 87y2

2y3 þ 36y3b
2 � 87y2

3 � 9b2� �
y2 � 8b6 � 9y3b

4 þ y3
3

� �
y1

þ 1
8
�2y4

2 þ y3 � 12b2� �
y3

2 þ 87y2
3 � 18b4� �

y2
2 þ y3

3 � 9y2b
4 � 8b6� �

y2

�
� b2 þ y3

� �2
y3 2y3 þ 8b2� ��

;

A1 y1;y2;y3;bð Þ¼1
4

y2þy3ð Þy4
1þ

1
4
�15y2

2þ 25y3þ6b2� �
y2þ3 2b2�5y3

� �
y3

� �
y3

1

þ1
4
�15y3

2þ 3y3�6b2� �
y2

2þ3 y2
3�2y3b

2þ3b4� �
y2

�
þ9 y3þb2� �

b2�5
3

y3

	 

y3



y2

1

þ1
4

y4
2þ 6b2þ25y3

� �
y3

2þ3 y2
3�2y3b

2þ3b4� �
y2

2

�
þ 4b4�31y3b

2þ25y2
3

� �
b2þy3

� �
y2þ b2þy3

� �2
y3þ4b2� �

y3

�
y1

þ1
4

y2
2þ 5b2�16y3

� �
y2þ y3þb2� �

y3þ4b2� �� �
y2þy3þb2� �

y2y3;
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A0 y1; y2; y3; bð Þ ¼ 1
16

27y2
3 þ 27y2

2 � 58y2y3

� �
y4

1 �
1

16
27y3

2 � 33y2
2y3 þ 3y2y3 8b2 � 11y3

� �
þ 27y3

3

� �
y3

1

þ 1
16

27y4
2 þ 33y3

2y3 þ 24y3b
2 � 27b4 � 105y2

3

� �
y2

2

�
þ 24b2y2

3 þ 33y3
3 þ 18y3b

4� �
y2 þ 27y4

3 � 27b4y2
3

�
y2

1

� 1
8

29y3
2 þ 12b2 � 33

2
y3

	 

y2

2 � 12y3b
2 þ 33y2

3 þ 9b4� �
y2

	
þ b2 þ y3

� �
8b4 � 17y3b

2 þ 29y2
3

� ��
y1y2y3

� 27
16

y2y3 � y2
2 � y2

3 þ b4� �
y2

2y2
3:
The necessary and sufficient conditions for det eH3 ¼ 0 are equalities
Ak y1; y2; y3; bð Þ ¼ 0; k ¼ 0;1;2;3;4: ðA:6Þ
The equality
A4 y1; y2; y3; bð Þ ¼ 0; ðA:7Þ
yields the following relationship:
b4 ¼ y2
1 þ y2

2 þ y2
3 � y1y2 � y1y3 � y2y3: ðA:8Þ
Next, the equality (A.8) is incorporated into the expression of A3 y1; y2; y3; bð Þ:
A3 y1; y2; y3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 þ y2
2 þ y2

3 � y1y2 � y1y3 � y2y3
4
q	 


¼ 0: ðA:9Þ
Elementary transformations in Eq. (A.9) yield necessary and sufficient conditions for Eq. (A.8) (b – 0) to hold. These condi-
tions require that two of the three parameters y1; y2; y3 must coincide, for example, y1 ¼ y2 :¼ y0 and y0 – y3 (then
b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p

). Now, the expressions of y0 and b can be introduced into Ak y1; y2; y3; bð Þ; k ¼ 0;1;2. Elementary transforma-
tions help to prove that equalities in (A.6) hold true for all k.

Thus, det eH3 ¼ 0 when y1 ¼ y2 :¼ y0, (A.1) and the equality b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 � y3
p

yield:
3a2 ¼ 2c2 y0 � y3ð Þ: ðA:10Þ
Now, straightforward symbolic computations help to prove that det H4 ¼ 0, but det H3 – 0.

Appendix B

Coefficients of the equality (54) read:
p̂0 ¼ s;

p̂1 ¼
s� y0

ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
;

p̂2 ¼
3
2

s� y0

ĉ2 y0 � y3ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
�3

2
y0 þ

2
3

y3

	 

� 1

3
y0 �

2
3

y3 þ s
	 


;

p̂3 ¼ 3
s� y0

ĉ3 y0 � y3ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
s� y3ð Þ þ 1

2
y0 �

3
2

sþ y3 � 3s
	 


;

p̂4 ¼
15
2

s� y0

ĉ4 y0 � y3ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
�12

5
�1

3
y0 �

2
3

y3 þ s
	 


y0 � y3ð Þ
	 
	

�3
5

y2
0 �

16
5

y3sþ 8
5

y2
3 þ

6
5

y0sþ s2



;

p̂5 ¼
45
2

s� y0
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s� y3

y0 � y3

r
�5

3
y2

0 þ
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3

y0sþ s2 þ 8
3

y2
3 �

16
3

y3s
	 
	

þy3
20
3

s� 4
3
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þ 2

3
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3
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;

p̂6 ¼
315

4
s� y0

ĉ6 y0 � y3ð Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
�30

7
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15
y2
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8

15
y0 �

8
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s
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2
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7
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7
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7
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0 �
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7
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7

s2
	 


� 5
7

y3
0 �
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7
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Eq. (54) then reads:
1
64

y0q̂ s� y0ð Þ4

ĉ8 y0 � y3ð Þ4
�2 q̂ĉ þ 1ð Þ y0 � y3ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
y0

1
2
þ q̂ĉ

	 

� y3 � q̂ĉy3 þ

1
2

s
	 
	

þ1
4

s2 þ y2
0

1
2
þ q̂ĉ

	 
2

þy0 s q̂2ĉ2 þ 3q̂ĉ þ 3
2

	 

� 2y3 � 5q̂ĉy3 � 3q̂2ĉ2y3

	 

�s 3q̂ĉy3 þ 3q̂2ĉ2y3 þ 2y3

� �
þ 2y2

3 q̂ĉ þ 1ð Þ2
�
¼ 0:
Eq. (54) is solved using symbolic computation techniques; three roots read:
q̂1 ¼ 0; q̂2 ¼ q̂3 ¼ �
1
2ĉ

�y0 þ 3y0

ffiffiffiffiffiffiffiffiffiffi
s�y3

y0�y3

q
þ 4y3 � 4y3
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s�y3
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q
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q
� s

¼ 1
2ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3

y0 � y3

r
� 1

	 

:
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The equality Dŷq̂1 ¼ q̂2
1 is trivial because q̂1 ¼ 0.

q̂2 ¼ q̂3 ¼ 1
2ĉ

ffiffiffiffiffiffiffiffiffiffi
s�y3

y0�y3

q
� 1

� �
, therefore:
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Appendix D

We will prove that Dŷl1 ¼ q̂1l1; Dŷl2 ¼ q̂2l1 þ l3; Dŷl3 ¼ 3q̂2l3.

The first equality is trivial because Dŷl1 ¼ 0 and q1 ¼ 0.

Next, Dŷl2 ¼ Dĉ þ s�y0
ĉ

ffiffiffiffiffiffiffiffiffiffi
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y0�y3

q
Ds

� �
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:

Finally,
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But, on the other hand,
3q̂2l3 ¼ 3
1
2ĉ
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what concludes the proof.

Appendix E

Proof of the equality in (59).
p̂0 ¼ s, therefore:
1
1!

Dŷs ¼ Dŷ l1 þ l2

� �
¼ 0þ l2q̂2 þ l3 ¼ l10þ l2q̂2 þ l3

1
1
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1
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Let the following equality hold true:
1
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what concludes the proof.

Appendix F
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z� ĉð Þ

1� 1
2ĉ
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ĉ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� y3
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y3
p� �

z
� �2 :
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