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Abstract. An algorithm for the construction of cryptographic hash function based on
optical time average geometric moiré, chaotic dynamics and digital image processing is
proposed in this paper. This algorithm is based on the fact that inverse problem for
identification of the original grayscale color function from its time averaged image is an
ill-posed problem. The problem becomes even more complex if a chaotic map is
incorporated into the process of time averaging. The algorithm is designed to cope with
any type of digital data and efficiently compresses initial information into a smaller data

set.
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1. INTRODUCTION

A hash function is a transformation that takes a digital input and returns a fixed-size string,
which is called the hash value. Hash functions with just this property have a variety of
general computational uses, but when employed in cryptography, the hash functions are
usually chosen to have some additional properties: it must be relatively easy to compute
hash values for any given inputs; hash functions must be one-way and collision-free [1, 2].
A hash function is said to be one-way if it is hard to invert, where “hard to invert” means

that given a hash value, it is computationally infeasible to find the input. A hash function is
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said to be collision-free if it is computationally infeasible to find any two different digital

inputs which hash values coincide.

We will construct a hash function exploiting physical principles of nonlinear dynamics and
chaos embedded into optical digital image time averaging techniques. It must be noted that
the considered optical methods are virtual optical methods and all digital algorithms can
cope with any type of digital data. Recovery of original grayscale distribution from digital
time averaged images is an ill-posed inverse problem. Incorporation of chaotic maps into
time averaging makes the inverse problem even more complex. Nevertheless, the
complexity of direct calculation of hash values is a straightforward and efficient digital
procedure. The object of this paper is to propose an efficient numerical technique for

implementation of a new class of hash algorithms.
2. OPTICAL BACKGROUND

Geometric moiré [3, 4] is a classical optical experimental technique based on the analysis
of visual patterns produced by superposition of two regular gratings that geometrically
interfere. Moiré patterns are used to measure variables such as displacements, rotations,

curvature, and strain throughout the viewed area.

Moiré grating on the surface of a one-dimensional structure in the state of equilibrium can

be interpreted as a harmonic function [3, 5]:
1 2z 1
Flx)=—cos| —x |+—, 1
(x)=3 ( 3 j > (1

where A is the pitch of the grating. Such a continuous function is well applicable to digital
image processing in virtual computational environments [5]. Numerical value 0 of the
function in this equation corresponds to black color; 1 — to white color; all intermediate
values — to grayscale color intensity levels. The grating of a one-dimensional structure in a

deformed state can be interpreted as follows [6]:
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where s defines the deflection from the state of equilibrium.

Double exposure geometric moiré techniques can be extended to time average geometric
moiré methods when the deflections from the state of equilibrium oscillate in time and long

exposure times are used to average the grayscale levels [3]:

T
F(x)= lim% O (% cos(%[ (x —ssin(ar + (p))) + %jdt = %cos(z—ﬂ x]J0 (2—7[ SJ + % , (3)

A

where s now is the amplitude of dynamic deflections; @ and ¢ are the frequency and phase

of harmonic oscillations; J, is zero order Bessel function of the first kind. Time averaged

moiré fringes will form at such amplitudes of dynamic deflections where the argument of
the Bessel function in eq. (3) becomes equal to a root of the Bessel function. Thus, an
explicit relationship between the pitch of the grating, amplitude of harmonic oscillations

and the order of the time averaged fringe takes the following form:
s =2 i=12,. @)
T

where 7, is the i-th root of the zero order Bessel function of the first kind (Fig. 1).

Geometric moiré techniques have a general limitation associated with the fact that the
displacements can be determined only in the direction orthogonal to the lines of the
grating. Ability to exploit the natural microstructure of the surface as a stochastic grating
eliminates this restraint. If the grayscale level of a non-deformable one-dimensional body
1s F(x), then its time averaged grayscale intensity at a point x, is [7]:

T

liml F(x, —ssin(@t + ¢))dt =

L F(x, —ssint)dt = H (F(x)), (5)
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where H | is a generalized operator of time averaging [8].

Inverse problems involving geometric moiré are characterized by the fact that the
information of interest (e.g. the distribution of grayscale color intensity on the surface of a
non-deformable body) is not directly available. The imaging device (the camera) provides
measurements of a transformation of this information in the process of time averaging
while the body performs harmonic or chaotic oscillations. In practice, these measurements
are both incomplete (sampling) and inaccurate (statistical noise) [7]. This means that one
must give up recovering the exact image. Indeed, aiming at full recovery of the information
usually results in unstable solutions due to the fact that the reconstructed image is very
sensitive to inevitable measurement errors. In other words, slightly different data would

produce a significantly different image.

Figure 1. Time averaged moiré fringes produced by harmonic grating (4 =0.2) at
increasing amplitudes s. The graph of zero order Bessel function of the first kind is shown
to illustrate the relationship between the centerlines of the fringes and roots of the Bessel

function.
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Solution of the inverse problem for identification of F(x), when only time average image is
known, is computationally infeasible and this fact is exploited for construction of hard to

invert hash function.
3. TIME AVERAGING OF HARMONIC MOIRE GRATINGS

It is shown in [9] that it is possible to construct mathematical relationships in operator

format between an original grayscale function F(x) and its time average produced by
harmonic oscillations around the state of equilibrium. First, function F (x)=F (x)—% is

constructed requiring that it must be square integrable and can be expressed in a Fourrier

series: J.(I?(x))zdx<+oo; ﬁ(x):iocnexp(i%xj; —-l<x<l; [>0; where

—00

Then, time averaged image can be expressed in the following form [9]:
HF(x)=®" (f)(sv)cbﬁ(x))+ % , (6)

where p(x) is the distribution of the random variable which defines the displacements
from the state of equilibrium during the process of time averaging; f)(z) is the Fourrier
transform of p(x). It is clear that p(x) for harmonic oscillations is an arcsine distribution.

As Fourrier transform of arcsine distribution is zero order Bessel function of the first kind,

the following equality holds true for harmonic oscillations:
H F(x)= 0"/, (sv)0F(x))+ % . (7)

Time averaging of a grayscale function (one-dimensional image which oscillates

harmonically in time) produces grayscale blur. That blur can be characterized as a
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convolution between the original image (function) and the point spread function which

characterizes the distribution of deflections from the state of equilibrium in time.

Equation 7 is an important result which shows that the inverse problem of reconstruction of

the original grayscale function is an ill-posed inverse problem.

Zero order Bessel function of the first kind has multiple roots (Fig. 1). Therefore there
exists multiple divisions by zero in the kernel of the inverse problem (Eq. 7) what makes
this inverse problem ill-posed. This property is illustrated by Fig. 1 where a number of

time averaged interference fringes can be observed at increasing amplitude s.

4. DESCRIPTION OF THE ALGORITHM FOR CONSTRUCTION OF
CRYPTOGRAPHIC HASH FUNCTION

The algorithm for construction of the one-dimensional hash function comprises three basic
parts:
1. Acquisition of input data: amplitude s and grayscale function F(x).

2. Production of the intermediate result: H F(x).

3. Delivery of output data: time averaged grayscale function stretched to min-max

levels.

There three basic parts are graphically illustrated in Fig. 2. The original grayscale function

F(x) is constructed as a set of random numbers evenly distributed in interval [0,1]. We plot
the values of H F (x) produced by harmonic oscillations at increasing s as s sweeps from 0

to 2. One can observe grayscale riddles in the upper and lower part of the digital image in
Fig. 2(a) (similar to the riddles above and below time averaged fringes in Fig. 1). The hash
value of the constructed hash function is the middle part of time averaged image (riddles
are disregarded). Such approach enables to realize the compression of the original data into
a smaller set what is a standard feature of existing hash functions. Finally, time averaged
grayscale levels are stretched to min-max level range what eliminates even theoretical

possibility to reconstruct the original F(x) from its time averaged image.



617

RAGULSKIS ET AL:...CRYPTOGRAPHIC HASH FUNCTIONS...

0" L -

2 0 2 4 6 8 10 x
HF(x)a
1 L
(d) 05

0 1 -

2 0 2 4 6 8 10 x

Figure 2. Graphical illustration of the three basic parts of the cryptographic algorithm:
(a) H F (x) at increasing amplitudes s; (b) original grayscale function as a set of random
numbers evenly distributed in interval [0,1]; (c) grayscale levels at s =2; (d) time averaged

grayscale function stretched to min-max levels (s =2).
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Figure 3. Illustration of the algorithm (harmonic motion): (a) original grayscale
distribution (width of the virtual pixels is 0.4); (b) time averaged grayscale at s=0.8; (c)
time averaged levels reconstructed at appropriate locations of virtual pixels; (d) hash value

stretched to min-max levels.

As mentioned earlier, functionality of the proposed cryptographic hash function enables
processing of any kind of data — not necessarily digital grayscale images. That fact is
illustrated in Fig. 3 where an input set of natural numbers (Fig. 3(a)) is transformed to the

output set (Fig. 3(d)); vertical integers denote virtual grayscale levels.

5. ALGORITHM FOR CONSTRUCTION OF HASH FUNCTION BASED ON THE
CHAOTIC MAP

The theoretical result in eq. (6) enables use of any type of time function determining
dynamic deflections from the state of equilibrium. As mentioned previously, the

complexity of the problem would not decrease only if f)(z) is not a trivial function (what

may happen if the motion law is uni-directional motion with constant velocity). Thus we
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incorporate state variable defining some sort of chaotic motion assuming that it describes

dynamic deflection from the state of equilibrium.

The general structure of such a modified algorithm for construction of the two-dimensional
hash function is illustrated in a schematic diagram in Fig. 4. Computations required to
transform the digital input into a hash value are based on chaotic dynamics, geometric
optics, and digital image processing. Data base holds a collection of virtual grayscale one-
dimensional images which are represented as arrays of integers. Every integer must fit into
grayscale range between 0 and 255. Control parameter is used to tune the shape of chaotic
attractor. Preconditioning is required to fit the amplitudes of virtual dynamic deflections to
a realistic computational scenario, what can be interpreted as an additional security

parameter. Other steps in Fig. 4 are discussed in the previous Sections.
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Figure 4. Schematic graphical representation of the algorithm for the construction of hash

function.
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Figure 5. Bifurcation diagram for the driven damped nonlinear pendulum with parameter

values w=2/3; a=2.048, with respect to the variation of the damping coefficient . The

insets show phase space diagrams with orbits corresponding to specific values of the

parameters
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Figure 6. [llustration of the algorithm (chaotic motion): (a) original grayscale distribution
(width of virtual pixels is 0.4); (b) time averaged grayscale distribution produced by
chaotic oscillations; (c) time averaged grayscale distribution averaged at appropriate virtual

pixels; (d) hash value stretched to min-max levels
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As mentioned previously, we use a chaotic map for the construction of hash algorithm. We
consider a nonlinear periodically driven damped pendulum, which is a paradigm model in
the study of nonlinear dynamics. A dimensionless time evolution equation of such

pendulum reads [10]:

2

f=—sin¢9—b%+acos(a)t), ®)

dt

where b is the damping coefficient; a is external forcing amplitude; and @ is the frequency.
The driven damped pendulum with @=2/3, b=1.0, and a=2.048 yields chaotic behavior

following a period-doubling sequence of bifurcations (Fig. 5).

Phase trajectories in the insets of Fig. 5 are plotted in frames (9; 9) at the following values

of b: (a) b=1.04; (b) b=1.025; (c) b=1.01; (d) b=1.0055; (¢) b=1.003; (f) »=1.0002.

Parameter b is varied following the rule b, =1.05— 10'351 ln(l+%), =1, ...,
n

1001, what helps to expand the cascade of period-doubling bifurcations.

We use parameter value »=1.0002 for construction dynamic deflections which are used for
time averaging of original grayscale function (Fig. 6(b)). Hash value is produced when the
averaged grayscale levels are fitted to virtual pixels (Fig. 6(c)) and stretched to min-max

levels (Fig. 6(d)).

6. CONCLUSIONS

A new class of hash functions is proposed in this paper. Chaotic map is incorporated into
the process of virtual time averaging. Though the inverse problem is ill posed, algorithm
for calculation of hash values is efficient and straightforward. Calculations are based on the
principles of virtual geometric optics, nonlinear dynamics and digital image processing.
Such an approach builds prerequisites of wide potential application of the proposed hash

functions.
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