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Abstract. Order adaptive algorithm for real time holography appli-
cations is presented in this paper. The algorithm is based on Master-
Worker parallel computation paradigm. Definite integrals required for
visualization of fringes are computed using a novel order adaptive
quadrature rule with an external detector defining the order of inte-
gration in real time mode. The proposed integration technique can be
effectively applied in hybrid numerical-experimental techniques for anal-
ysis of micro-mechanical components.
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1 Introduction

Holographic interferometry [1] is a powerful experimental technique for analysis
of structural vibrations, especially if the amplitudes of those vibrations are in the
range of micrometers. Recent advancements in optical measurement technology
[2] and development of hybrid numerical-experimental techniques [3] require ap-
plication of computational algorithms not only for post-processing applications
like interpretation of experimental patterns of fringes, but embedding real time
algorithms into the measurement process itself [4].

Computation and plotting of patterns of time average holographic fringes in
virtual numerical environments involves such tasks as modelling of the optical
measurement setup, geometrical and physical characteristics of the investigated
structure and the dynamic response of the analysed system [5]. Calculation of
intensity of illumination at any point on the hologram plane requires compu-
tation of definite integrals over the exposure time. If the analysed structures
perform harmonic oscillations that do not impose any complications – there ex-
ist even analytical relationships between the intensity of illumination, amplitude
of oscillation, laser wavelength, etc. [1]. But if the oscillations of the investigated
structures are non-harmonic (what is common when structures are nonlinear)
and the formation of patterns of fringes is implemented in real time mode, the
calculation of definite integrals becomes rather problematic. The object of this
paper is to propose an order adaptive algorithm which could be effectively ap-
plicable for calculation of definite integrals in different real time applications.
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2 Integration Rule Without Limitation for the Number
of Nodes

Higher order Newton-Cotes quadrature formulas [6] require that the number of
nodes must be a divisible numeral. For example the second order Newton-Cotes
rule already requires that the number of nodes must be odd. Such conditions
mean that a significant number of nodes at the end of an experimental time series
must be deleted and the integration interval artificially shortened for higher order
Newton-Cotes rule, if the number of nodes is not known at the beginning of the
experiment. Therefore there exists a definite need for a high order integration
rule with a constant time step without any requirement for the number of time
steps. Such quadrature formula is proposed in [7]:

t0+(k−1)h∫

t0

f (t) dt =

(
m∑

i=1

aifi +
k−2m∑
i=1

fm+i +
m∑

i=1

am−i+1fk−m+i

)
h, (1)

where ai are the weights and fi are the discrete values of sampled function
f at time moments t0 + (i − 1) · h, i = 1, . . . , k. It has been proved that this
integration rule is exact when the integrated function is a polynomial of the m-th
order, if only m is odd [7]. The numerical values of the weights ai are presented
in the Table 1 at different values of m. The parameter p in this table denotes
the maximum order of exactly integrated polynomials; l is the order of the error
term expressed in the form O(hl).

Table 1. Nodal weights of the integration rule

m 2 3 4 5 6 7

a1 0.5 0.37500000 0.33333333 0.32986111 0.31875000 0.30422454
a2 1 1.1666667 1.2916667 1.3208333 1.3763889 1.4603836
a3 0.95833333 0.83333333 0.76666667 0.65555556 0.45346396
a4 1.0416667 1.1013889 1.2125000 1.4714286
a5 0.98125000 0.92569444 0.73939319
a6 1.0111111 1.0824735
a7 0.98863261

p 1 3 3 5 5 7

l 2 4 4 6 6 8

It can be noted that finite element method was used for the derivation of the
proposed quadrature rule which can be interpreted as a new variant of Gregory
type formulas [6]. Unfortunately, the proposed quadrature rule (also Gregory
type rules) can be used only when the order is predefined before the experi-
ment and does not change over the integration process. This paper proposes
a multi-processor parallel algorithm with full order adaptability in real time
calculation mode.
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3 The Basic Real Time Integration Rule

Let’s suppose that function f is sampled starting from t0 at equally spaced time
steps; the length of a time step is h. Due to the real time process the number
of nodes is not predefined before the experiment and process continues until the
end of the sampling. Let’s suppose that the terminal moment of the sampling
occurs at t0 + 7h (8 function values fi, i = 1, . . . , 8 are produced during the
sampling process). Order of the integration rule is predetermined to be m = 3.

1. The first sum on the right side of eq. (1) is computed:

Sum1 = a1f1 + a2f2 + a3f3, (2)

where a1 = 0.375, a2 = 1.1666667, a3 = 0.95833333 (Table 1).
2. Starting from the fourth node, the following sum is computed until the end

of the time series:

Sum2 = f4 + f5 + f6 + f7 + f8. (3)

3. When the sampling is terminated, reverse computation of the third sum of
eq. (1) is done:

Sum3 = (a3 − 1) f6 + (a2 − 1) f7 + (a1 − 1) f8. (4)

4. Finally, the definite integral
t0+7h∫

t0

f (t) dt is calculated according to eq. (1):

I = (Sum1 + Sum2 + Sum3)h. (5)

The process can terminate at any time step, if only k ≥ 2m, but the last three
values of the sampled function must be saved at every time moment in order to
calculate Sum3.

Now we will generalize the presented example for m−th order integration
rule, if only the minimum number of nodes is 2m. The algorithm is based on
Master-Worker paradigm [8]. Schematic graphical representation in Fig. 1 helps
to interpret the computation process.

Several notations used in Fig. 1 can be explained in more detail. Order of the
integration rule m is predefined before the experiment. Calculation of Sum1 is
performed by Master processor (grey right arrow in signal diagram; block n in
time diagram and node n in flow chart diagram). After m terms are included
into Sum1, the Master processor continues summation of nodal values of the
integrand until the sampling process is terminated (white right arrow in signal
diagram; block n(1) in time diagram and node n(1) in flow chart diagram). When
the sampling is over, Worker processor performs reverse calculation of Sum3

(grey left arrow in signal diagram; block n̄ in time diagram and node n̄ in flow
chart diagram).

It can be noted that the last m values of the sampled function must be
remembered at every time node in order to calculate Sum3.
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Fig. 1. Schematic representation of the basic model: (a) signal diagram; (b) time dia-
gram; (c) flow chart diagram

4 Order Adaptive Algorithm for Real Time Applications

The presented basic real time integration rule copes well with integrands which
can be approximated by a polynomial of a definite order in the domain of inte-
gration. But if the variation of the integrand is fast in some regions and slow in
another regions, then order adaptability should be used to increase the accuracy
of a definite integral. One can suggest to select very large m at the beginning of
the experiment, but then we may face the risk that k < 2m.

We assume that there exists a detector which measures the values of the
integrand and recommends the order of integration rule at any time moment in
the domain of integration. Let’s assume that the present order is m1 and the
detector recommends order m2. Then two different situations may occur. If the
number of sampled nodes since m1 was declared is higher than or equal to 2m1,
the transition to order m2 can be performed fluently. The Master processor
starts calculating Sum1 for order m2, while Worker processor takes care for
reverse calculation of Sum3 for terminated m1.

But if the number of sampled nodes since m1 was declared is less than 2m1,
the Worker processor cannot start reverse calculation of Sum3 without damaging
Sum1. Therefore a much more complex transition to order m2 takes place in this
situation. If m2 is higher than m1 the Worker processor must return to the point
where order m1 was declared and must recalculate Sum1 with order m2. But
the simplicity is misleading – the Master processor has already summated Sum1

with order m1 to the total sum! Therefore the Worker processor must evaluate
different weighting coefficients for orders m1 and m2. Moreover, the length of
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the queue where the last function values are stored must be already not mi, but
2mi (here mi is the current order).

If m2 is lower than m1, but the number of sampled nodes since m1 was
declared is less than 2m1, the integration with order m1 must be continued until
the number of nodes is equal to 2m1, and only after that the order m2 can be
accepted.

Finally, we may comment what would happen if the sampling process is ter-
minated and the number of sampled nodes since mi was declared is lower than
2mi. Unfortunately, there will be no any possible techniques to preserve order mi

(time step is constant and reverse sampling with smaller time step is impossible
in real time mode). The only solution is to select maximum possible order for
the available number of time steps (floored half of the number of time steps).

We will illustrate the described situations with the following example (Fig. 2
and Fig. 3).

One Master processor and two Worker processors are necessary for full real time
mode. Algorithm control, integrand sampling and summation of sums Sum1 and
Sum2 is performed by Master processor.The Worker processors run only when the
order is changed. Worker processors send back the results to the Master processor.

As an extreme situation we describe the transition from order m3 to order m4

(Fig. 2) where the second Worker processor is necessary for real time integration.
Master processor starts calculating Sum1 (with weights corresponding to order
m3) as soon as the order m3 is declared. The number of discrete time nodes

Fig. 2. Real time integration, general case: (a) signal diagram; (b) time diagram
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Fig. 3. Real time integration, general case: flow chart diagram

necessary for this procedure is m3. As soon as Sum1 is finished, Master proces-
sor starts summing non-weighted discrete function values. This process continues
until order m4 is declared. But the order detector has sensed a burst in the digital
time series, so m4 is much higher than m3. In this particular situation we have
that m4 is even greater than k3 (Fig. 2). Thus, the Worker processor must recal-
culate both the old Sum1 and the rest non-weighted part (n3 and n

(1)
3 in time

diagram). Moreover, at the same time Sum3 for order m2 must be accomplished
(n̄2 in time diagram). Thus Worker-2 processor is unavoidable for real time com-
putation (n̄2 and n̄3 overlap in time diagram). The mathematical formulas for
processes n̄2 and n̄3 (consisting from two parts) can be described explicitly in
the text of the general algorithm which we omit due to the restrictions for the
size of the manuscript.

5 Application of Real Time Integration Technique for
Visualization of Holographic Interferograms

Computational visualization of holographic interferograms in virtual numerical
environments is an important component of hybrid numerical – experimental
techniques. These techniques are of crucial importance when the analysed sys-
tems perform non-harmonic motions what is a typical situation when micro-
mechanical systems are considered [9].

Whenever a pattern of time average holographic fringes is considered, the
intensity of illumination at the hologram plane is described by the following
relationship [1]:

I (x, y) = lim
T→∞

1
T 2

∣∣∣∣∣∣
T∫

0

exp
(

j
2π

λ
ζ (x, y, t)

)
dt

∣∣∣∣∣∣

2

, (6)

where I is the intensity of illumination; T – exposure time; j – imaginary unit;
λ – laser wave length; ζ – dynamic displacement at point (x, y) at time moment
t. Usually the function ζ (x, y, t) is decomposed to a product of time function and
coordinate function describing the modal shape. It is clear that accurate compu-
tation of definite integral in eq. (6) for finite exposure times is associated with
the accuracy of pattern of fringes in the numerically reconstructed hologram.

Dynamic displacements of cantilevered micromechanical bar are presented in
Fig. 4(a). Scanning laser is measuring the displacements at the marked nodes
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Fig. 4. Dynamic displacements of cantilevered micromechanical bar: (a) finite element
shapes at different time moments; (b), (c), (d) and (e) – nodal orders of integration at
different time moments

Fig. 5. Numerically reconstructed pattern of fringes

at discrete time moments. Intensity of illumination in the hologram plane is
calculated at every node, so definite integrals are calculated at every node. The
system is checking the magnitude of dynamic displacement at every node and
generates the recommended order of integration which is based on the absolute
value of discrete displacement at appropriate node. Figures 4(b), 4(c), 4(d) and
4(e) present the recommended orders of integration at different time moments;
where m1 = 3, m2 = 5, m3 = 7, m4 = 9.

Figure 5 presents the produced time average holographic pattern of fringes.

6 Concluding Remarks

The presented procedure for real time calculation of definite integrals can be
effectively applied in hybrid numerical-experimental techniques where time ave-
rage intensities of illumination are reconstructed in virtual computational
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environment. Implementation of the proposed integration rule enables full real
time computations with minimal data queue lengths and effective management
of integration order.

References

1. West, C.M.: Holographic Interferometry. Wiley New York (1979)
2. Kobayashi, A.S.: Handbook on Experimental Mechanics - 2nd ed. SEM Bethel

(1993)
3. Holstein A., Salbut L., Kujawinska M., Juptner W.: Hybrid Experimental-numerical

Concept of Residual Stress Analysis in Laser Weldments. Experimental Mechanics
41(4) (2001) 343–350

4. Field J.E., Walley S.M., Proud W.G., Goldrein H.T., Siviour C.R.: Review of Ex-
perimental Techniques for High Rate Deformation and Shock Studies. International
Journal of Impact Engineering 30(7) (2004) 725–775

5. Ragulskis M., Palevicius A., Ragulskis L.: Plotting Holographic Interferograms for
Visualization of Dynamic Results from Finite-element Calculations. International
Journal of Numerical Methods in Engineering 56 (2003) 1647–1659

6. Davis P.J., Rabinowitz P.: Methods of Numerical Integration. Academic Press
New York (1984)

7. Ragulskis M., Ragulskis L.: Order Adaptive Integration Rule with Equivalently
Weighted Internal Nodes. Engineering Computations 23(4) (2006) 368–381

8. Mattson T., Sanders B., Massingill B.: Patterns for Parallel Programming. Addison
Wesley Professional (2004)

9. Nayfeh A.H., Younis M.I., Abdel-Rahman E.M.: Reduced-order Models for MEMS
Applications. Nonlinear Dynamics 41 (2005) 211–236


	Introduction
	Integration Rule Without Limitation for the Number of Nodes
	The Basic Real Time Integration Rule
	Order Adaptive Algorithm for Real Time Applications
	Application of Real Time Integration Technique for Visualization of Holographic Interferograms
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


