
http://jvc.sagepub.com

Journal of Vibration and Control 

DOI: 10.1177/1077546304041189 
 2004; 10; 1057 Journal of Vibration and Control

M. Ragulskis and K. Koizumi 
 Applicability of Attractor Control Techniques for a Particle Conveyed by a Propagating Wave

http://jvc.sagepub.com/cgi/content/abstract/10/7/1057
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:Journal of Vibration and Control Additional services and information for 

 http://jvc.sagepub.com/cgi/alerts Email Alerts:

 http://jvc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://jvc.sagepub.com/cgi/content/refs/10/7/1057 Citations

 at Kaunas University of Technology on May 7, 2010 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/cgi/alerts
http://jvc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://jvc.sagepub.com/cgi/content/refs/10/7/1057
http://jvc.sagepub.com


������������	 
� �������
� 

���
� ���������� �
� �
�������� 

���	�� �	 � ��
�������� ����

M. RAGULSKIS
���������� 	
 ��������
��� �������� 
� �������� ������ ��
����
�� 	
 �����	�	��� �������
�
�����
�

K. KOIZUMI
���������� 	
 ����	���
� �
	����
����� �	���� ��
����
��� �	����� �����

(Received 3 February 2003; accepted 14 October 2003)

� ������! The governing equations of motion describing the dynamics of a conveyed particle by a propagating
surface wave are derived. Although the problem may look rather primitive, it holds considerable complica-
tions first of all due to the fact that the shape of the surface cannot be described explicitly. Special forward
and reverse time marching numerical techniques, incorporating the solution of nonlinear algebraic equations
in every time step, are developed for time integration of derived differential equations. It is shown that the
described system possesses numerous nonlinear features such as sensitivity to initial conditions, coexisting
attractors. This fact builds the foundation for the potential applicability of attractor control techniques based
on small external impulses.

��� "	�#�! Propagating wave, attractor, nonlinear dynamics

�� ����� !
����

Mechanical transportation of particles by propagating waves is an important engineering
problem with numerous applications. The basic principle of such conveyance is exploited
in many different systems such as vibration conveyors, longitudinal or angular ultrasonic
motors, vibration feeders, etc. Although the mathematical modeling of such systems may
look rather primitive, the derivation of the governing equations of motion faces considerable
complications. This paper is focused on the construction of a model of a conveyed particle
and the investigation of its nonlinear dynamics when the amplitude of the propagating wave
is not small.

"� #�
$%��!� 

Whenever a traveling surface wave occurs in a medium, it can be characterized by a retrograde
elliptic motion of the particles of the media. Typical examples could be a traveling Rayleigh
wave in an elastic medium, or water waves (deep or shallow) without mass transport. When
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the amplitude of the propagating wave is small, the instantaneous shape of the boundary of
the media can be approximated as a harmonic function. When the amplitude of the wave
is not small, the motion of the particles of the media is still elliptic, but the shape of the
boundary is not harmonic (Achenbach, 1984; Landau and Lifschitz, 1986). Although there
have been numerous attempts devoted to the analysis of the dynamics of a particle conveyed
by a propagating wave (Tokar and Ulitko, 1984; Jacobsen et al., 1994; Benisti and Escande,
1997; Elskens et al., 1998; Hui and Tomita, 2000), all of these incorporate some sort of
simplification. Accurate modeling of even such apparently simple dynamical system faces
considerable complications due to the fact that the instantaneous shape of the boundary
(profile) cannot be described explicitly. This can be illustrated by kinematic relationships
describing a traveling Rayleigh wave.

Explicitly, the longitudinal and transverse displacements of the medium at the surface of
the flat boundary with a traveling Rayleigh wave can be expressed as a harmonic (Achenbach,
1984; Landau and Lifschitz, 1986)
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where �� and �� are longitudinal and transverse displacements, � is the coordinate of the
surface point of the medium before the wave process takes place, � is const, 
 is the
wavenumber, and � is the density. � can be found from the following algebraic equation
(Achenbach, 1984)
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and angular velocity� can be found from the following transcendental equation (Achenbach,
1984) �
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, �
 �
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, � is the Poisson ratio, and

� is the first Lamé constant.
It can be noted that the ratio between the amplitudes of transverse and longitudinal

deformations depends on � . In usual elastic media, it is quite normal that the transverse
displacement is about 1.5 times larger than the longitudinal displacement (Landau and
Lifschitz, 1986). The motion of a point in the medium is an ellipse. Also, the direction
of the velocity of the particles at the peaks of the wave is opposite to the direction of wave
propagation. Particle displacements are greatest at the surface and decrease exponentially
downward.
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As mentioned earlier, when the amplitudes of propagating waves are small, the investigation
of the profile’s shape and the form of the trajectories of its points is not important, as in the
infinitesimal of equilibrium the shape of the surface is acceptably harmonic and trajectories of
its points elliptic. However, there exist numerous technical applications where the oscillating
profile performs the function of a transporting organ and the amplitudes of oscillations are
relatively large if compared to the dimensions of the transported bodies (McCluskey et al.,
1994; Moesner and Higudi, 1995; Hauser and Sommer, 1998). One of the examples of
such systems is presented in Figure 1. The uncertainty of numerical simulations of such
systems depends on the accuracy of mathematical models describing those systems. This
fact can be illustrated by a simple mechanical system consisting of a small particle located
on a propagating wave profile.

For simplicity, further analysis is performed in plane ��� (Figure 1). Let a profile in the
equilibrium state coincide with axis ��. Let a point of the profile in the equilibrium state
��� �� be translated to coordinates ��� ��. Let this translation be time and coordinate sensitive

� � �� � ��� 	�

� � � ��� 	� (4)

where ���� 	� and � ��� 	� are predefined functions. If
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� ��� 	� � � 
�	 ��	� 
�� (5)

where � and � are constants, equation (4) will describe retrograde elliptical motion analogous
to a traveling Rayleigh wave described by equation (1).

Let us denote the coordinates of the mass particle in plane ��� as ��� ��. The condition
that the particle is located on the surface of the profile defined by equation (4) leads to the
following constraint

� � � ��� 	� � (6)

where � is to be found from the following equality in which � is given and � is the unknown:

�� � ��� 	� � �� (7)

In other words, the shape of the profile cannot be described explicitly. Really, the
instantaneous shape of the Rayleigh surface wave is not a harmonic function. Nevertheless,
the tangent to the surface of the profile at point � can be expressed explicitly
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� (8)

where 
 denotes the angle between the tangent and the axis ��. By the way, when equation
(5) is true, and � � ��
; 
�� �	 � � ���� ��; � � �, then
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where � is infinitesimal around ���� � ��. Equation (9) represents the situation when the
profile turns to be a propagating cyclone.

Let us denote the instantaneous velocities of the point of the profile in contact with the
mass particle in the direction of axes �� and �� appropriately as �� and ��, where dots represent
full derivatives by 	. These quantities can be calculated as

�� � ��
 ��� 	� �

�� � � �
 ��� 	� � (10)

It must be noted, that the expressions of �� and �� are not explicit, and the variable � in
their expressions must be found from equation (7).

The condition that the mass particle will slide on the surface of the profile brings the
following constraint into force

���
 �
��� ��

��� �� � (11)
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where �� and �� are the instantaneous velocities of the mass particle in the direction of axes ��
and �� appropriately. �� can be expressed from equation (11):
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It can be noted again that � in equation (12) must be calculated from current � using
relationship (7). Full differentiation by time of equation (7) leads to the relationship between
�� and ��, but the differentiation is not straightforward, as � is no longer a constant. As the mass
particle slides on the surface of the profile, the coordinate of the origin of the surface point
in contact with the mass particle changes. Step-by-step differentiation leads to (keeping in
mind that ��
 �

���� ��
��� ��

):
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 � (13)

Although the first impression can be that the relationship is quite complicated, analytical
experiments with simple forms of functions � and � can exemplify its validity.

.� %�/'����% '0!�����- �* (�����

The relative sliding velocity of the mass particle on the surface of the profile is expressed as

��� � ���� ��� 
�	
 � ���� ��� 	
�
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�

�
� ��� ��
 � � (14)

Then the linear friction force � between the mass particle and the profile takes the form

� � ����� (15)

where � is the coefficient of viscous friction.
The condition of dynamic equilibrium leads to the following system of equations�

����  	
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�	
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�
 �  
�	


(16)

where � is the mass of the particle, and  is the reaction force. Elementary transformations
and substitutions lead to the expression of the governing equation of motion in the form

" ��� 	� � ��� � ��� 	� � ��� � ��� 	� � # ��� 	� � � ���� � �� (17)
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where
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and ���
 is defined in equation (8).
If � ��� 	� � �, the equation of motion can be simplified to the following form:

" ��� 	� � � � �� �� �
�
�

� ��� 	� �
�

�

�
� � �� �� �

�


� �� ���
 �

�
� �

� ��� 	� � !� �� � �
��


 �

�
� �

# ��� 	� � � ���� �
�
� �

���
 � � �� �

� � �� (19)

It can be noted that equation (17) is implicit. In fact, it contains two variables, � and �,
which are cross-linked by relationship (8). If the ordinary differential equation (17) is solved
using the time marching technique, the solution of equation (8) is necessary in every time
step. As the unknown in equation (8) is �, not �, its solution poses considerable difficulties,
first of all due to the non-uniqueness of the solution (the solution of equation (8) is unique
only if � $ ��
). Application of computer algebra is also very much limited, and the equation
can be solved using an iterative algorithm in every time step.

Nevertheless, equation (17) is a valuable product in the sense that the dynamics of a
particle is considered on a profile that cannot be described explicitly. Moreover, it is a single-
degree-of-freedom equation (not mentioning the hidden variable �).
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When the reaction force

 �
����� �!� � 	
�
�


�	

(20)

turns out to be equal to zero, the particle loses its contact with the surface and its dynamics
is governed by the following system of equations where � and � are independent variables:�

��� � ��
�����! � ��

(21)

1�  )��(�
 '0!�,�#��!( �� 
�'2�-���% �����
����-

Natural dynamic equilibrium is the motion of a particle on the slope of a propagating wave
with the velocity of its propagation (trivial regime of motion)

�� � ��

�� � ��
�

� � ��
 � 	� %� (22)

where % is a constant.
The conditions of existence and stability of the trivial regime of motion can be easily

analyzed in the explicit form when � ��� 	� � �; � ��� 	� � � 
�	 ��	� 
��. Then the
condition of the existence takes the form

�! 	
�
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or, after elementary transformations,
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Equation (24) produces roots
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Thus, the necessary but not sufficient condition of the existence of the trivial regime of
motion is

�! & ��
�



� (26)

Keeping in mind that ���
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%�, equation (25) can be transformed to

	
� �
%�� �
�!

����
�

�� �!

����


�
� �

��
�
�

 at Kaunas University of Technology on May 7, 2010 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com


1064 M. RAGULSKIS and K. KOIZUMI
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If
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 �, then the equation for %� will have no solutions, and condition

	
� �
%�� � � will lead to
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�
� (28)

Analogously, if
�!

����
$ �, then the equation for %� will always have a solution, while

the condition 	
� �
%�� � � will lead to inequality:

�! $
�� �� � ��
��

�
�
� (29)

It is important to note that the last condition means that there can exist multiple coexisting
trivial solutions. Finally, the regions of the existence of trivial solutions are represented in
Figure 2.
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Equations (27) can produce a maximum of four sets of solutions
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where � � �.
The stability of the existing solutions is checked by the construction of variational

equations in the infinitesimal around those solutions. If only %� exists, then �%��� is unstable
and �%��� is stable. If both %� and %� exist, then �%��� and �%��� are stable, �%��� and �%���
are unstable. By the way, �%��� $ �%��� $ �%��� $ �%���. This fact is illustrated in
Figure 3.

Naturally, the trivial solution is not the only solution. When the condition of existence of
trivial solutions is not satisfied, the system possesses different solutions than those described
by equation (22). Moreover, solution (22) is not necessarily the only stable solution, even
if the conditions of existence of that solution are satisfied. Different stable attractors can
coexist. The reverse time marching technique from the surroundings of the unstable saddle
point %�� (or two unstable saddle points %�� and %��) enables the construction of attractor
basin boundaries in phase plane ��	� 
�� ���, which are presented in Figures 4 and 5. White
zones denote the basins of attraction to the trivial solution; shaded zones denote the small
average velocity solution; thick solid lines are reverse time marching trajectories from the
unstable saddle point; thin solid lines are direct time marching trajectories from the unstable
saddle point.

The effect of sensitivity of the solution and the shape of the small average velocity
attractor can be clearly illustrated in the phase plane � ��� ��� (Figure 6).
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It is interesting to note that the same effect of sensitivity to the initial conditions is valid
also when � & �, but the shape of the small average velocity attractor is different if compared
to analogous attractor at � � �. This is illustrated in Figure 7.

The points of dynamic equilibrium can be found also in case when � & �, but only
numerical techniques are used for this purpose. The black circle in Figure 8 denotes stable
dynamic equilibrium. The system is integrated in time using the direct time marching
technique until all transients fade out. It is much more difficult to find the unstable
equilibrium, but the fact that it is located on the line �� � ��
 makes the problem easier
(shooting of initial conditions and direct time marching technique is used).

The relationship between the average velocity and the amplitude of the traveling wave
is presented in Figure 9. It can be seen that at certain values of � the dynamical system
has two different attractors. At small amplitudes, the particle weight is two small to satisfy
the conditions of existence of trivial regime of motion (those conditions are not the same as
described in equation (30), as � is not zero). At a certain value of � the small average velocity
attractor evolutes to a separatrix. At the limit value of �, the system stays infinitely long in
the infinitesimal of the unstable saddle point. In some sense, this feature of the dynamics of
the system reminds us of a nonlinear pendulum. The system possesses only a trivial regime
of motion at higher �. It can be noted that � � ����; so the transverse displacement is about
one and a half times larger than the longitudinal displacement as mentioned previously in
the description of a Rayleigh wave. Other parameters such as !, �, and 
 are accepted to be
non-dimensional for the simplicity of analysis. Further growth of � will lead to the jumping
of the particle on the propagating profile.
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The dynamics of a particle on the surface of an elastic body is a nonlinear problem, so such
effects as the coexisting stable attractors should not be very astonishing. What is rather
astonishing is that the dynamics of the analyzed system does resemble the motion of a
nonlinear pendulum with external moment (Ragulskis, 2004). Many nonlinear features of
the two physical systems described by different governing differential equations of motion
are very much alike. The most attractive of these features is the coexistence of attractors;
this fact enables the application of motion control strategy described in Ragulskis (2003). A
small external impulse can bring the system to the basin of attraction of another regime of
motion. Practically, this means that a small external impulse can bring the particle from the
regime of motion with small average velocity into motion with the wave’s velocity (trivial
solution). In other words, the effectiveness of conveyance can be dramatically increased.

Another interesting feature is that the average velocity of a particle in the non-trivial
regime of motion can be positive, although the design of such mechanisms as ultrasonic
motors or feeding instruments (Figure 1) is based on the opposite effect. This should not
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be astonishing, as the transported bodies usually do contact only with the upper regions of
the deformed boundaries in the mentioned systems. The retrograde elliptic motion transports
those bodies in the reverse direction. In our model the particle slides all through the surface
without losing contact with the surface (if only it does not jump off the surface as described
in equations (20) and (21)).

The acquired results are in some sense promising for the analysis of more complex
systems as described in Figure 1. If the dynamics of a system where the transported element
is a deformable body is also sensitive to the initial conditions, the analogous control strategy
based on small external impulses can be applied, leading to far more effective modes of
operation. This is the object of future research.
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