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Abstract: A control scheme for finite-time stabilization of unstable orbits of the fractional difference
logistic map is proposed in this paper. The presented technique is based on isolated perturbation
impulses used to correct the evolution of the map’s trajectory after it deviates too far from the
neighborhood of the unstable orbit, and does not require any feedback control loops. The magnitude
of the control impulses is determined by means of H-rank algorithm, which helps to reveal the
pseudo-manifold of non-asymptotic convergence of the fractional difference logistic map. Numerical
experiments are used to illustrate the effectiveness and the feasibility of the proposed approach,
which is applicable beyond the studied fractional difference logistic map.
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1. Introduction

The problem of controlling nonlinear discrete-time iterative maps is an active area
of research in control theory, as such maps are applied in a plethora of fields including
engineering, physics, biomedicine, population dynamics and economics [1,2].

A survey of classical control problems and schemes for nonlinear iterative maps is
given in [3], while some more recent examples are given below. A neural-network based
feedback control scheme for DC motors is proposed in [4]. The control of a predator–prey
system with the Allee effect is realized via hybrid methods in [5]. A dynamic extended
delayed feedback scheme for the control of the Rössler system is proposed in [6]. The
Ott–Grebogi–York method is used to construct a computational chaos control scheme
for the logistic map in [7]. Evolutionary metaheuristic methods are employed in the
stabilization of the Hénon map in [8]. It is shown in [9] that model discovery methods for
producing accurate and parsimonious parameter-dependent Poincaré mappings help to
stabilize chaotic processes, including the Hénon map and the Rössler system. A finite-time
model-free adaptive control scheme based on the nonparametric dynamic realization of the
unknown nonlinear system is proposed in [10].

Fractional iterative maps form an important subset of discrete systems. Unlike their
integer-order counterparts, such maps possess unique properties including non-locality
and memory effects, which means that the state of the system is determined not only by
its neighborhood, but globally, including a significant part (or, in some cases, all) past
states [11]. Fractional maps find applications in a plethora of fields, such as image encryp-
tion [12,13], information security [14], epidemiology [15,16], economics [17], physics [18]
and demographics [19].

Due to the wide range of applications, control of fractional iterative maps is a subject of
many studies. A feedback control scheme for the fractional difference logistic map based on
permutation entropy and fuzzy logic is constructed in [20]. Necessary optimality conditions
of uncertain discrete-time fractional-order systems governed by difference equations are
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derived in [21]. A backstepping method for the control of fractional single-input single-
output systems is constructed in [22]. Containment control is successfully applied to
discrete-time fractional-order multi-agent systems with a time delay in [23].

The main objective of this paper is to propose an impulse control scheme for the
stabilization of unstable period-1 orbits of the fractional difference logistic map (which will
be referred to as the fractional logistic map) [24,25]:

xn+1 = x0 +
n+1

∑
j=1

Gα
j−1
(
axn−j+1

(
1− xn−j+1

)
− xn−j+1

)
, j = 0, 1, . . . , (1)

where Gα
0 = 1, Gα

j =
(

1− 1−α
j

)
Gα

j−1, j = 1, 2, . . . . The parameter α ∈ (0, 1] describes the
fractionality of (1): setting α = 1 results in the classical logistic map.

Note that fractional order models, including continuous and discrete systems, do
not have periodic motion due to the memory effect [26,27]. However, some trajectories of
discrete fractional maps may exhibit asymptotic periodicity after some number of iterations.
Such trajectories are referred to in the remainder of the text as asymptotically periodic
orbits. In particular, it is known that the fractional difference logistic map (1), which is the
main subject of this study, does possess asymptotically periodic orbits [25].

Most control schemes use feedback, which involves continuously monitoring the
output of a system and adjusting the input to maintain a desired response [28]. The scheme
proposed in this paper is based not on feedback, but impulse control, which involves
making a perturbation of the system of a specific size (called the impulse) at a specific time
based on predetermined fitness criteria [29]. The proposed scheme is less invasive than
feedback control, as the fractional logistic map itself is not altered and a small perturbation
is sufficient to temporarily stabilize the system.

2. Preliminaries
2.1. H-Ranks and Algebraic Complexity

H-ranks provide a straightforward but effective way to measure the algebraic com-
plexity of a sequence. This measure has been successfully employed to analyze complexity
in a number of different maps such as the invertible logistic map [30], the bouncer map [31],
the Gauss map [32], as well as the fractional logistic map [33].

Consider a discrete sequence
(
xj; j = 0, 1, . . .

)
. The Hankel transform of this sequence

is the sequence
(
dj; j = 1, . . .

)
, where dj is the determinant of a jth order Hankel matrix Hj

formed from
(

xj; j = 0, 1, . . .
)
:

dj = det
(

Hj
)
, Hj =


x0 x1 . . . xj−1
x1 x2 . . . xj
...

...
. . .

...
xj−1 xj . . . x2j−2

, j = 1, 2, . . . (2)

If there is such n ∈ N that dn 6= 0, but dn+j = 0, j = 1, 2, . . . , the sequence
(
xj; j = 0, 1, . . .

)
represents a linear recurring sequence of order n [34].

The first n values determine these sequences completely, since the remaining elements
can be computed via a linear recurrence relation. Furthermore, the computation of the
order of a linear recurring sequence can be performed via the singular value decomposition
(SVD). Consider a linear recurring sequence of order n and the corresponding Hankel matrix
Hn+j, j ≥ 1. The spectrum of Hn+j contains n nonzero eigenvalues and j zero eigenvalues,
thus the singular values σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n+j of matrix Hn+j are comprised of n nonzero
elements and j zero-valued elements. Note that using this technique circumvents the need
to compute the sequence

(
dj; j = 1, . . .

)
: it is sufficient to select a large enough N and

compute the SVD of HN .
The singular values σ2

j , j = 1, . . . , N of matrix HN are related to the eigenvalues λj,

j = 1, . . . , N of HN . In general, for any square matrix A ∈ CN×N , the singular values are
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the square roots of the non-zero eigenvalues of AA∗ [35]. However, since HN is real and
symmetric, the singular values σ2

j are square roots of the eigenvalues of HN H∗N = H2
N .

However, no real-world sequences can satisfy the linear recurrence condition both
due to their more complex nature and the presence of noise. In this case, the H-rank of a
sequence is computed using the following technique. Given a real-world (potentially noisy)
sequence

(
xj; j = 0, 1, . . .

)
, a threshold value ε and a Hankel matrix order N, the SVD of

HN is computed. The H-rank of sequence
(
xj; j = 0, 1, . . .

)
is equal to m, where m is the

number of the singular value σ2
m, m ∈ {1, . . . , N} that satisfies the inequality

σ2
m > ε, σ2

m+j ≤ ε, j = 1, 2, . . . , N −m. (3)

The selection of threshold ε and N is crucial: N has to be large enough to cover enough of
sequence

(
xj; j = 0, 1, . . .

)
in order to evaluate its complexity, while ε has to be selected in

such a way that the non-significant (close to zero) singular values would be disregarded [30].
The presented technique provides a way to measure the algebraic complexity of a sequence
that is both easily understandable and effective to compute.

2.2. Classical Logistic Map and Types of Convergence

Despite its simplicity, the classical logistic map

xn+1 = axn(1− xn), n = 0, 1, . . . (4)

has been shown to possess surprisingly complex dynamics [36]. H-ranks have been shown
to be an effective tool for the study of such dynamics, including the detection of convergence
types. The bifurcation diagram of (4) and the plot of H-ranks is depicted in Figure 1. Note
that the structure of the bifurcation diagram is fully contained within the plot of H-ranks.
Moreover, intertwined manifolds of non-asymptotic convergence are also present in the
pattern of H-ranks [30].

Figure 1. The bifurcation diagram of (4) is depicted in part (a); the plot of H-ranks is shown in part (b).
Note that parameter values N = 50 and ε = 10−10 were used for the computation of H-ranks.

Non-asymptotic convergence, as opposed to asymptotic convergence where the map
converges to a fixed orbit as n→ +∞, is a type of convergence for which the map enters a
fixed orbit exactly after a finite number of iterations. This type of convergence can only



Fractal Fract. 2023, 7, 570 4 of 13

exist for non-invertible discrete maps (such maps where the value of xn = f−1(xn+1) is
not unique).

Classical logistic map can exhibit three types of convergence to a fixed point, which
are illustrated in Figure 2 for a fixed value of parameter a = 3.3. Note that for this
parameter value, two attractors exist: a stable period-2 attractor and an unstable period-1
attractor. Figure 2a depicts asymptotic convergence to a stable period-2 orbit. Selecting
the initial condition, corresponding to the center of the low H-rank region, results in the
non-asymptotic convergence to the stable period-2 orbit (Figure 2b). Finally, selecting
the initial condition, corresponding to the center of the high H-rank region, results in the
non-asymptotic convergence to the unstable period-1 orbit (Figure 2c).

Figure 2. Three types of convergence processes to an orbit of a classical logistic map at a = 3.3. Parts
(a–c) correspond to asymptotic convergence to the stable period-2 orbit, non-asymptotic convergence
to the stable period-2 orbit, and non-asymptotic convergence to the unstable period-1 orbit respec-
tively. Plots on the left side depict the values of H-ranks for x0 ∈ [0, 1] and a = 3.3. Plots on the right
side illustrate the trajectories of the classical logistic map started from different initial conditions
marked by a black circle in the corresponding plots of H-ranks.

2.3. Fractional Logistic Map

An essential property of the fractional difference logistic map (1) is the memory
effect. If α 6= 1, the nth element xn depends on all preceding elements x0, x1, . . . , xn−1. In
other words, the memory horizon of the fractional difference logistic map does reach the
initial condition (though the influence of “older” elements decays exponentially as can be
observed from the weight coefficients Gα

j , j = 0, 1, . . . ).
The bifurcation diagram and plot of H-ranks for (1) are depicted in Figure 3. Types of

convergence of (1) have already been analyzed using H-ranks in [33]. The main goal of this
paper is to go one step further by proposing a control scheme for the fractional counterpart
of the logistic map (1) based on the H-rank algorithm.
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Figure 3. The bifurcation diagram of (1) for α = 0.8 is depicted in part (a); the plot of H-ranks is
shown in part (b). Parameter values N = 50 and ε = 10−10 were used for the computation of H-ranks.

3. The Unstable Orbits of the Fractional Difference Logistic Map

The bifurcation diagram of the fractional difference logistic map (Figure 3) shows
that period-1 orbit is unstable at a = 3. It is demonstrated in Figure 2c that the unstable
period-1 orbit can be stabilized by choosing a proper initial condition of the classical logistic
map. Therefore, before designing the scheme for the stabilization of unstable orbits, it
is important to understand the behavior of the unstable period-1 orbit of the fractional
difference logistic map.

In this section, we only address fixed points relevant to the construction of the impulse
control scheme. A more detailed discussion on types of fixed points in fractional order
systems can be found in [37–39].

3.1. The Existence of the Unstable Period-1 Orbit at a = 3

The first iteration of the fractional difference logistic map (1) is equivalent to the
classical logistic map: x1 = ax0(1− x0). The non-trivial fixed point for the classical logistic
map reads: x∗ = 1− 1

a [36]. Thus, setting x0 = x∗ results in x1 = x∗. By induction, the
fractional difference logistic map (1) yields xj = x∗ for all j = 0, 1, . . . . Thus, the fractional
difference logistic map continuously remains on the unstable period-1 orbit if only the
initial condition is set to x0 = 1− 1

a at a = 3.

3.2. The Existence of the Non-Asymptotic Convergence to the Unstable Period-1 Orbit

It is demonstrated in Figure 2c that non-asymptotic convergence to the unstable period-
1 orbit does exist for the classical logistic map. It is important to understand that the same
does exist for the fractional difference logistic map.

The existence of the non-asymptotic convergence to the unstable period-1 fixed orbit
x∗ for the fractional difference logistic map (1) would mean that there exists an iteration
number k ∈ N such that:

xk 6= x∗, but xk+j = x∗, j = 1, 2, . . . (5)

Consider the case k = 0. As before, note that x1 = ax0(1− x0) and solving for x0

yields two values: x(1)0 = x∗ and x(2)0 = 1
a . The first solution does not represent the element

of the trajectory representing the non-asymptotic convergence because condition (5) does
not hold true. However, taking x0 = 1

a leads to x1 = x∗. However, the next elements do not
stay at x∗ due to the memory effect of the fractional difference logistic map. For example,
the second element x2 reads:
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x2 = x0 + Gα
0 (ax1(1− x1)− x1) + Gα

1 (ax0(1− x0)− x0)

=
1
a
+ Gα

0 · 0 + Gα
1 x∗ =

1
a
+ Gα

1

(
1− 1

a

)
.

(6)

Thus, x2 = x∗ only for some specific value of α. Even if such a value is chosen, there
remains no way to ensure the equality x3 = x∗. Thus, non-asymptotic convergence does
not exist for fractional difference logistic map for k = 0.

Since non-asymptotic convergence does not exist for k = 0, it also cannot exist for
k = 1, 2, . . . because the last iteration would result in the case that has already been discussed.

The above derivations lead to an important conclusion. It is impossible to find such
an initial condition in the fractional logistic map that would yield a trajectory that would
continuously remain at the unstable orbit.

This fact is illustrated in Figure 4, where α = 0.8 and a = 3. The threshold parameter
of the H-rank algorithm is set to ε = 10−10, the maximum H-rank (the dimension of the
Hankel matrix) is set to N = 50.

The asymptotic convergence to the asymptotically stable period-2 orbit occurs when
the initial condition x0 does not coincide with any of the bright bands in the pattern of
H-ranks (Figure 4a). As mentioned previously, the non-asymptotic convergence is not
possible for the fractional difference logistic map. However, a short non-asymptotic process
yields a finite-time stabilization of the unstable period-1 orbit when the initial condition x0
is set right over the bright band in the pattern of H-ranks (Figure 4b). Note that such finite-
time stabilization of unstable orbits of the fractional difference logistic map by choosing an
appropriate initial condition is already discussed and investigated in [33].

Figure 4. Types of convergence in the fractional logistic map for parameter values α = 0.8, a = 3. Part
(a) depicts asymptotic convergence to the period-2 asymptotically stable attractor. Part (b) temporary
stabilization of the trajectory to the unstable period-1 attractor. Plots on the right represent trajectories
of the fractional logistic map; plots on the left depict the H-ranks for initial conditions x0 ∈ (0, 1); the
black circle indicates the initial condition from which the trajectories on the right begin. Note that in
(b), the black circle is on the red band of high H-ranks.

4. The Memory Effects and the Naive Control Scheme
4.1. The Naive Control Scheme for the Classical Logistic Map

Let us consider the classical logistic map at a > 3 (after the first period doubling
bifurcation). Then, the the period-1 orbit is unstable and the non-asymptotic convergence
to the unstable period-1 orbit can be implemented by choosing a proper initial condition
(Figure 2c).
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However, let us consider a trajectory that does not converge non-asymptotically to
the unstable period-1 orbit. For example, let us set the initial condition to x0 = x∗ + ε,
where x∗ = 1− 1

a (a = 3.3) and ε is the perturbation; ε 6= 0. Such a trajectory x0, x1, . . . will
converge to the stable period-2 orbit.

Let us assume that the objective of the control scheme is to bring back the trajectory
to the unstable period-1 orbit when it travels from the point x∗ further away than the
threshold δ. In other words, the classical logistic map is iterated until an iteration m is
found such that the following condition is satisfied:

|xm−1 − x∗| < δ, |xm − x∗| ≥ δ, (7)

The control scheme is straightforward. One needs to set xm+1 = x∗. It is clear that the
classical logistic map will remain indefinitely in the unstable period-1 orbit. The magnitude
of a discrete impulse required to stabilize the unstable period-1 orbit is equal to |xm−1 − x∗|.
Such a control scheme is denoted as the naive control scheme for the classical logistic map.

4.2. The Naive Control Scheme for the Fractional Difference Logistic Map

Let us consider the naive control scheme for the fractional difference logistic map (1),
as depicted in Figure 5. The black line in Figure 5b denotes the trajectory of the fractional
logistic map before the control impulse; the gray line continues the same trajectory if no
stabilization impulse is applied at iteration k = 86. The blue line represents the trajectory
after the naive control impulse. It is clear that using this scheme does not result in neither
finite-time nor continuous stabilization. Clearly, the stabilization of unstable orbits of the
fractional difference logistic map requires a more complex approach.

Figure 5. The naive stabilization scheme does not work for the fractional difference logistic map
(α = 0.8, a = 3, and the stabilization threshold δ = 0.05). Part (a) depict H-ranks of fractional
logistic map trajectories starting from the initial condition, where the black circle denotes the initial
condition, chosen in such a way that the logistic map trajectory is temporarily stabilized. In part (b),
fractional logistic map trajectories are depicted. Red dotted lines represent x∗ ± δ; the green dashed
line represents the iteration at which the stabilization is performed; the black line represents the
initial part of the trajectory for which |xn − x∗| < δ holds true; the gray solid line is the continuation
of the black trajectory if no stabilization is performed; the blue line is the trajectory after performing
naive stabilization by setting x86 = x∗. Part (c) depicts the H-ranks computed time-forward starting
from the moment of stabilization, where the black circle denotes the position of the trajectory after
the stabilization impulse x∗. Part (d) is a zoomed plot of the boxed area present in part (b), which
details the stabilization process: when the initial trajectory intersects the red dotted line, the control
impulse (red arrow) shifts the trajectory to x∗.
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5. The Proposed Scheme Based on a Single Control Impulse

As shown in Figure 4b, there exist such initial conditions for which the trajectory of
the fractional difference logistic map becomes stabilized around the period-1 orbit for a
finite period of time. The proposed control scheme is constructed with the key idea about
a control impulse, which must be used when the oscillations of the trajectory around the
unstable orbit become unacceptably large. As demonstrated in Figure 5, a naive control
strategy does not work for the fractional difference logistic map. Therefore, the feasibility
of the control strategy based on a single control impulse does depend on the existence of
such coordinates, which would yield transient processes capable to stabilize the unstable
orbit (after it has started to diverge).

The apparent simplicity of the raised question is misleading. As noted previously, the
nth element of the fractional difference logistic map depends on all preceding elements,
including the initial condition. Changing a single coordinate of the trajectory at some
iteration number k (k > 0) does not alter the past values of the trajectory at k = 0, 1, ..., k− 1,
and all the memory of the trajectory is taken into account. Note that if the control impulse
is performed at iteration k, the value of x0, x1, . . . , xk remains unchanged, as shown in
Figure 5b,d. The impact of past iterations on the value of the fractional difference logistic
map is depicted in Figure 6.

Figure 6. The weights Gα
k for the fractional logistic map (1). While the most recent iterations have the

biggest impact on the next elements of the map, the memory horizon does reach the initial condition.

The proposed solution to this non-trivial question is based on the H-rank algorithm.
However, the starting point of the sequence used to construct the Hankel matrix is now
set not to the initial condition x0, but to the iteration number where the control impulse is
used. The pattern of H-ranks becomes the integral part of the proposed control scheme.

Initially, one needs to set the threshold δ and find m such that condition (7) holds true
(after the initial transient leading to the finite-time stabilization of the unstable orbit). Then,
the control impulse must bring the trajectory to a point xm = x̃, where x̃ is set to the center
of a yellow horizontal band in the pattern of H-ranks. The proposed control scheme for
finite-time stabilization of the fractional difference logistic map is illustrated in Figure 7.
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Figure 7. A single control impulse can stabilize the unstable orbit of the fractional difference logistic
map for a finite time. The parameters of the model are set to: α = 0.8; a = 3; δ = 0.05. Red
horizontal dotted lines denote the tolerance corridor around the unstable period-1 orbit: x∗ ± δ. Black
lines represent the trajectories of the fractional difference logistic map before stabilization impulse.
Grey solid lines show how the trajectory would evolve if the control is not applied. Vertical green
dashed lines denote the iteration number where the control impulse is applied. Blue lines represent
trajectories after the stabilization impulse. Parts (b,d) depict the patterns of H-ranks computed
time-forward starting from the stabilization moment. The black circles in (b,d) show the position
of the map trajectory after the control impulse. Note that the unstable period-1 is stabilized in both
panels (a,c). However, the transient processes are different right after the control impulse.

Note that the patterns of H-ranks in Figure 7 parts (b) and (d) are identical (except the
markers showing the coordinates of the trajectory right after the control impulse). And
though the unstable period-1 orbit is stabilized in both Figure 7 panels (a) and (b), the
transient processes right after the control impulse are different. It is interesting to note that
the complexity of the short transient processes after the control impulse depends on the
chosen band in the pattern of the H-ranks (Figure 7). This is an interesting effect which
could be exploited for the minimization of transient processes after the control impulse.

The proper selection of x̃ is a key to this control scheme. As demonstrated in
Figure 8a,b, the selection of x̃ in the wide dark red band of highest possible H-ranks
results in a divergent trajectory. Note that this fact does not contradict the boundedness
of (1), since this divergence can only occur after the control impulse. Control impulses alter
the memory of the map, making it possible for the divergence to occur.

A less extreme violation of the boundedness of (1) can be observed in Figure 8c,d:
the selection of x̃ close to the wide dark red band of H-ranks results in negative values
of the fractional difference logistic map. However, in this case divergence does not occur
as the trajectory later remains within (0, 1). Of course, the unstable period-1 orbit is not
stabilized then.
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Figure 8. A proper selection of the control impulse is a key to the proposed scheme. Violation of
the boundedness of the fractional logistic map with parameters α = 0.8, a = 3, δ = 0.05 is observed
in panels (a,c). In (a,c), red dotted lines represent x∗ ± δ; black lines represent the trajectories of the
fractional logistic map before the impulse; gray solid lines show how the black lines would continue
if the control impulse is not applied; blue lines represent trajectories after the stabilization impulse;
the green dashed line represents the iteration at which the impulse is applied. Parts (b,d) depict the
H-ranks computed time-forward starting from the stabilization impulse in (a,c), respectively. The
white circle in (b) shows the trajectory after performing the stabilization impulse in (a); the black circle
in (d) shows the trajectory after performing the stabilization impulse in (d). Note that the blue line in
(c) dips below zero before asymptotically converging to the asymptotically stable period-2 orbit.

6. The Proposed Scheme Based on Multiple Control Impulses

It has been shown in the previous section that the proposed scheme based on a
single control impulse does stabilize the unstable period-1 orbit of the fractional logistic
map for a significant number of iterations. The same stabilization strategy can be used
repeatedly (right after the stabilized trajectory no longer satisfies condition (7)). The
described algorithm allows for indefinite stabilization of the unstable orbits of the fractional
logistic map, with short bursts of transient processes after the application of the control
impulse, as shown in Figure 9.

Note that the the patterns of H-ranks are different for each stabilization step (Figure 9b–d),
which means a fixed coordinate x̃ that can be used in every stabilization step does not
exist. Instead, the patterns of H-ranks must be recomputed and the coordinate x̃ must be
chosen for each particular iteration. This property is not unexpected due to the non-locality
of the fractional difference logistic map (1). The memory of the map is different at each
stabilization point, which impacts (albeit sometimes imperceptibly) the pattern of H-ranks.
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Figure 9. Realization of the proposed control scheme for the fractional difference logistic map at
α = 0.8, a = 3, δ = 0.05 in part (a). Blue and purple lines denote stabilized trajectories; the pink
line shows the trajectory asymptotically converging to the asymptotically stable period-2 orbit.
Parts (b–d) depict the H-ranks computed time-forward starting from the first, second and third
stabilization moments, respectively; black circles show the position of the map trajectories after
respective control impulses.

7. Concluding Remarks

An impulse control scheme for the stabilization of unstable period-1 orbits of the
fractional difference logistic map is proposed in this paper. The proposed impulse control
scheme involves a perturbation of the system such that it remains in a small, 2δ-width
band centered around the unstable period-1 orbit. Unlike feedback control schemes, the
proposed impulse-based algorithm does not need to modify the logistic map and can be
realized without error functions.

The concept of the H-rank of a sequence is the key to constructing this control scheme.
It provides a simple yet efficient way to measure a signal’s complexity and allows for
the detection of temporarily asymptotically stable pseudo-manifolds of non-asymptotic
convergence to unstable orbits. Numerical experiments with the fractional difference
logistic demonstrate the efficiency and viability of this approach, although the potential use
of this scheme is not limited to neither the analyzed model, nor the order of the unstable
orbit. While only one value of the fractionality parameter α = 0.8 is considered, the control
scheme is not limited by this selection and is viable for any 0 < α < 1. A study on the
impact of the value of parameter α on control scheme properties such as stabilization
duration and transient processes, as well as the adaptation and refinement of the proposed
H-rank-based impulse control scheme for other (not necessarily discrete) systems remains
an objective of future research.
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27. Diblík, J.; Fečkan, M.; Pospíšil, M. Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional
difference equations. Appl. Math. Comput. 2015, 257, 230–240. [CrossRef]

28. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A.; Powell, J.D. Feedback Control of Dynamic Systems; Prentice Hall: Upper Saddle
River, NJ, USA, 2002; Volume 4.

29. Piunovskiy, A.; Plakhov, A.; Torres, D.F.; Zhang, Y. Optimal impulse control of dynamical systems. Siam J. Control. Optim. 2019,
57, 2720–2752. [CrossRef]

http://doi.org/10.1016/j.ymssp.2021.108288
http://dx.doi.org/10.1155/2022/6931354
http://dx.doi.org/10.1016/j.chaos.2022.112362
http://dx.doi.org/10.1177/00375497221098417
http://dx.doi.org/10.1109/ACCESS.2021.3066101
http://dx.doi.org/10.1109/TCSII.2023.3269986
http://dx.doi.org/10.1016/j.image.2021.116363
http://dx.doi.org/10.1016/j.sigpro.2022.108489
http://dx.doi.org/10.1016/j.ijleo.2022.170356
http://dx.doi.org/10.1016/j.apm.2021.11.002
http://dx.doi.org/10.1016/j.rinp.2022.105797
http://dx.doi.org/10.1016/j.chaos.2021.110776
http://dx.doi.org/10.1016/j.chaos.2023.113429
http://dx.doi.org/10.1016/j.physa.2021.126100
http://dx.doi.org/10.1016/j.ejcon.2022.100723
http://dx.doi.org/10.1016/j.amc.2022.127450
http://dx.doi.org/10.1016/j.neucom.2019.12.067
http://dx.doi.org/10.1063/1.4819165
http://dx.doi.org/10.5890/DNC.2015.11.003
http://dx.doi.org/10.1016/j.nonrwa.2011.11.013
http://dx.doi.org/10.1016/j.amc.2014.11.108
http://dx.doi.org/10.1137/18M1212069


Fractal Fract. 2023, 7, 570 13 of 13

30. Lu, G.; Landauskas, M.; Ragulskis, M. Control of divergence in an extended invertible logistic map. Int. J. Bifurc. Chaos 2018,
28, 1850129. [CrossRef]

31. Landauskas, M.; Ragulskis, M. A pseudo-stable structure in a completely invertible bouncer system. Nonlinear Dyn. 2014,
78, 1629–1643. [CrossRef]

32. Navickas, Z.; Ragulskis, M.; Karaliene, D.; Telksnys, T. Weak and strong orders of linear recurring sequences. Comput. Appl.
Math. 2018, 37, 3539–3561. [CrossRef]
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