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TECHNIQUES by M. Ragulskis, R. Maskeliunas, and L. Ragulskis

PLOTTING MOIRÉ FRINGES FOR CIRCULAR
STRUCTURES FROM FEM RESULTS

Procedures for plotting computer generated moiré
mechanical interference bands (moiré fringes) from
the results of finite element analysis can provide
meaningful information about the processes taking

place in the analysed structures. Such visualization is im-
portant from the point of view of interpretation of experi-
mental results2,7 and enables calculation of structural
stresses with sufficient accuracy.1,8 Computer generated
moiré fringes produced from the overlap of two repetitive
patterns can give a realistic view of the structural defor-
mations. Moreover, the digital plotting procedures of moiré
fringes can also be effectively applied for the visualization of
periodic dynamic processes if the structure is stroboscopi-
cally photographed in the states of equilibrium and the
states of extreme displacements.

Numerical generation of realistic fringe patterns requires
non-trivial computer code implementations. The sufficient

Fig. 1: Construction of the digital image

smoothness of the interfering
grids must be considered.
That requires the utilisation
of multiple intensity levels
and incorporation of 3D
graphical models. On the
other side, the discrete FEM
results must be interpolated
over the domain of the struc-
ture. Visualisation of small
deformations around the
state of equilibrium without
exaggerating the nodal dis-
placements also requires ap-
propriate adaptations.

The commonly used repeti-
tive patterns for the genera-
tion of moiré fringes are in-
terference grids formed from
arrays of parallel straight
lines. Application of such
grids for the structures of circular type faces quite severe
complications due to the interpretation of angular and radial
displacements. Moreover, application of straight parallel
grid lines in some experimental set-ups involving dynamic
analysis of circular structures is practically impossible.

Therefore the numerical procedures generating realistic
moiré fringe patterns for different structural geometries are
important and useful tools for visualization of numerical
analysis data and interpretation of experimental results.
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CONSTRUCTION OF THE DIGITAL IMAGE
Let the coordinates of the point r1 define the observation
point and the projection plane be defined by the points r2, r3
and r4 and vectors (r3 � r2), (r4 � r2) form the ortho-normal
base of the projection plane (Fig. 1):

r � (x , y , z ), i � 1,2,3,4. (1)i i i i

Let the planar structure in the state of plane stress be
meshed by the finite element method and be located in the
plane ‘A’ which coincides with the plane z � 0. It is assumed
that the analysed structure performs in-plane vibrations.

The location of every point M (x, y, z) on the surface of the
structure can be expressed through the shape functions of
the appropriate finite element.1 Three shape functions L1, L2
and L3 are associated to a finite element {p1, p2, p3} if the
triangular elements are used for meshing (Fig. 1).

Similarly, the location of
the point of intersection
P( ) between the linex̃, ỹ, z̃
r1M and the projection plane
B can be expressed through
the parameters L4 and L5 (L-
coordinates of the point P):

x̃ � L x � L x4 1 5

ỹ � L y � L y4 1 5 (2)
z̃ � L z � L z4 1 5

L � L � 14 5

The numerical values of
those L-coordinates can be
obtained from the solution of
the following system of lin-
ear algebraic equations

x x x �x �x L 02 3 4 1 1

y y y �y �y L 02 3 4 1 2

z z z �z �z L � 0 (3)2 3 4 1 3

1 1 1 0 0 L 14� �� � � �
0 0 0 1 1 L 15

Plotting of intensity levels in the projection plane requires
the calculation of the coordinates of the point P in the pro-
jection plane. Those coordinates can be calculated as the pro-
jections of the vector (P – r2) to the appropriate axes of the
projection plane:

X � (x̃ � x )(x � x ) � (ỹ � y )(y � y )2 3 2 2 3 2 (4)
� (z̃ � z )(z � z )2 3 2
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PLOTTING MOIRÉ FRINGES
FROM FEM RESULTS

Y � (x̃ � x )(x � x ) � (ỹ � y )(y � y )2 4 2 2 4 2

� (z̃ � z )(z � z )2 4 2

Nevertheless, such straightforward definition of the coordi-
nates of the point in the projection plane is not efficient from
the point of view of computational resources. If the projec-
tion plane is interpreted as a matrix of pixels, then the in-
verse problem is much more effective. Namely, if the coor-
dinates of the observation point and a pixel in the projection
plane are specified, then the appropriate point on the surface
of the structure can be found as described below. Moreover,
the resulting values describing the location of the point M
are not its coordinates in the space xyz, but its L–
coordinates. Such representation is extremely useful when
the calculations are coupled with the data from FEM—all
the information about the analysed structure is concentrated
in discrete nodes of the FEM mesh.

The calculation of the intensity level at an appropriate pixel
in the projection plane is assumed to be dependent on the
in-plane displacements at point M. The definition of point M
by its L–coordinates is advantageous due to the simplicity
of reconstruction of the displacements at point M from the
nodal displacements of the appropriate finite element. L1, L2
and L3 are in fact the shape functions of the finite element.

The solution of the inverse problem involves the following
calculations. The unit normal vector of the projection plane
denoted by (x0, y0, z0) is determined as the vector product of
(r3 – r2) and (r4 – r2). The spatial coordinates of )P(x̃, ỹ, z̃
can be found from the following system of equations:

x � x y � y z � z x̃3 2 3 2 3 2

x � x y � y z � z ỹ4 2 4 2 4 2� �� �x y z z̃0 0 0

X � x (x � x ) � y (y � y ) � z (z � z )2 3 2 2 3 2 2 3 2

� Y � x (x � x ) � y (y � y ) � z (z � z ) (5)2 4 2 2 4 2 2 4 2� �x x � y y � z z2 0 2 0 2 0

The third equation from the system (5) expresses the ortho-
gonality of the vector (P – r2) to the normal vector of the
projection plane.

As the analysed structure is located in the plane z � 0, and
( ), i � 1,2,3 denote the nodal coordinates of a linearx̂ , ŷi i
triangular element, the L-coordinates of the point M can be
determined from:

x̂ x̂ x̂ �x �x̃ L 01 2 2 1 1

ŷ ŷ ŷ �y �ỹ L 01 2 2 1 2

0 0 0 �z �z̃ L � 0 (6)1 3

1 1 1 0 0 L 14� �� � � �
0 0 0 1 1 L 15

The line intersects the plane A inside the analysed finite
triangular element when the conditions Li � [0,1], i � 1,2,3
are satisfied. The L-coordinates when referred to a triangle
as a finite element represent its shape functions (in our case
L1, L2 and L3). Here those functions are used in a more gen-

eral context exploiting the advantage of the straightforward
determination of the location of the intersection point with
respect to the appropriate triangle. Thus the approximate
coordinates of the point M(�, �, 0) are obtained by interpo-
lation using the calculated L–coordinates.

The presented methodology can be generalised for higher or-
der elements which can be subdivided into triangles. The
approximate local coordinates of the element can be obtained
by interpolation from the local coordinates of the nodes of
the triangle. This is applicable for higher order elements
with small deformations of their geometry. More complicated
cases require the calculation of the intersection between the
surface of the structure and the line using the general meth-
ods of three dimensional computer graphics.

CONSTRUCTION OF FRINGE PATTERNS´MOIRE

It is assumed that FEM analysis is based on the linear the-
ory of elasticity. Therefore, if the nodal deformations (or am-
plitudes of harmonic oscillation used for stroboscopic analy-
sis) in the direction of the x and y axes are defined as u and
v it is possible to find the original locations of points in the
state of equilibrium, when their positions in the deformed
structure are defined. If the coordinates of a point on the
deformed surface are (�, �), then this point in the state of
equilibrium had the coordinates (� � u, � � v). This recon-
struction can be performed for any interpolated point on the
analysed surface. Such methodology enables the preserva-
tion of the optical shape of the structure and eliminates the
need for exaggerating small deformations around the status
of equilibrium.

In order to obtain better interpretable moiré fringes the
smooth variation of the intensity of the fringes on the surface
of the object is proposed. It is assumed that the intensity
varies according to the harmonic law. The intensities of lines
on the object in the state of equilibrium correspond to the
first term in the following expressions, the other term cor-
responds to the deformed status of the structure:

2�� 2� (� � u)2 2I � cos � cos (7)� � � �
� �

2�� 2� (� � v)2 2I � cos � cos (8)� � � �
� �

where � is the constant defining the distance between the
grid lines, I stands for intensity level, Eq. (7) represents the
isothethes of u, Eq. (8) represents the isothethes of v.

The concept of isothethes is used in the description of moiré
fringes in [1] and concerns the image obtained by the over-
lapping of the image of the lines on the structure in equilib-
rium and in the deformed status.

Two maps must be built separately for identifying moiré
fringes in appropriate directions. The direction of the par-
allel grid lines can be varied by elementary rotations of the
structure.
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PLOTTING MOIRÉ FRINGES
FROM FEM RESULTS

Fig. 3: Generated moiré fringes for the displacement in the
direction of the x axis

Fig. 4: Generated moiré fringes for the displacement in the
direction of the y axis

Fig. 2: The geometry and the third eigenmode of the plate

It can be noted, that the interpretation of moiré isothethes
is not trivial. Fig. 2 shows the geometry of the structure in
equilibrium (grey lines) and the third eigenmode (dark solid
lines) of a rectangular plate with fastened lower edge. It is
assumed that the displacements in both directions on the
lower edge of the plate in the state of plain stress are equal
to zero, elsewhere the structure is free. The external exci-
tation is not stated explicitly and is assumed to be harmonic
with the resonant frequency of this eigenmode and is not
orthogonal to it. Thus it is possible to excite only this mode
(assuming it is not multiple) with negligible contribution of
the other modes, and to analyse its steady state motion by
using stroboscopic photography. The nodal displacements
are exaggerated with respect to the dimensions of the struc-
ture, the mesh is quite coarse. The constructed moiré fringe
patterns in two planar directions are presented in Fig. 3 and
Fig. 4. Isolines of displacements in both directions are con-
structed to validate the formation of isothethes (Fig. 5 and
Fig. 6). Isolines represent the lines on the surface of the
structure on which the analysed quantity takes constant val-
ues. The density of isolines indicates the rapidity of change
of the represented quantity. The presented methodology en-
ables generation of smooth moiré patterns from a relatively
rough FEM approximation.

FRINGES FOR CIRCULAR STRUCTURES´MOIRE
Application of arrays of straight lines for circular structures
can lead to certain complications. Circular structures are
such structures the experimental analysis of which is more
convenient to perform by using the polar system of coordi-
nates. For example, the use of parallel lines for investigation
of deformations of a rotating element of a printing machine
would give no practical results (Fig. 7). Modified moiré pat-
terns can be used for circular or ring type structures ena-
bling identification of angular and radial deformations.

The modified polar moiré patterns enable determination of
the intensity for the isothethes of the polar angle. It can be
calculated on the basis of the following relationship:

� � � v2 2I � cos k � arctg � cos k � arctg (9)� � � �
� � � u

where k is the constant determining the number of the radial
lines. It can be noted that the thickness of the radial lines
increases with the radius.
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PLOTTING MOIRÉ FRINGES
FROM FEM RESULTS

Fig. 5: The isolines of the displacement in the direction of
the x axis

Fig. 6: The isolines of the displacement in the direction of
the y axis

Fig. 7: Experimental investigation of a rotating contact
cylinder in a printing machine

Fig. 8: The geometry and the tenth eigenmode of the ring-
type structure

Analogously, the intensity for the isothethes of the radius
can be calculated from:

2�2 2 2I � cos �� � �� �
� (10)

2�2 2 2� cos �(� � u) � (� � v)� �
�

where � determines the distance between the concentric
lines.

Fig. 8 shows the geometry of the structure in the state of
equilibrium (grey lines) and the tenth eigenmode of a ring
type structure (dark lines) with fastened internal radius (the
displacements in both directions on the internal radius are
assumed to be equal to zero, elsewhere the structure is free).
The excitation is not stated explicitly because of the same
reasons as in the previous plate analysis problem. Due to
the curvilinear character of the moiré lines the moiré pat-
terns reproduce not the isolines of displacements, but the
isolines of the change of the angle (Fig. 9):

� � v �
arctg � arctg (11)� � � �

� � u �

and of the change of the radius (Fig. 10):

2 2 2 2�(� � u) � (� � v) � �� � � (12)

The validation of moiré patterns is presented in Fig. 11 and
Fig. 12. The moiré fringe patterns are difficult to compre-
hend, so the construction of the isolines helps for their better
validation and interpretation.
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PLOTTING MOIRÉ FRINGES
FROM FEM RESULTS

Fig. 9: Generated moiré fringes for the angular displacement

Fig. 10: Generated moiré fringes for the radial displacement

Fig. 11: The isolines of the variation of the angle

Fig. 12: The isolines of the variation of the radius

CONCLUSIONS
Plotting of moiré fringes from the results of finite element
calculations is important because of the ability of direct com-
parisons with the experimental results of analysis. The
smooth variation of the intensity of the lines on the surface
of the structure according to the trigonometric law is pro-
posed. The method is applied to the visualisation of the in-
plane vibrations by stroboscopic photographing of the struc-
ture in the state of equilibrium and in the state of extreme
deflections. Finally, the method is modified for the analysis
of circular structures producing digital angular and radial
moiré fringes.

The procedure of numerical formation of moiré fringes can
be applied in the process of the planning of experimental
investigation enabling the selection of optimal spacing be-
tween the lines. Another useful application of the numerical
method is the identification of the structural parameters
when comparison between optical and simulated patterns
can help to detect such physical values like the modulus of
elasticity.
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