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A dendritic neuron model exhibits bistability under continuous weak stimulation - the
oscillatory synchronized regime and the quiet regime coexist. Complex nonlinear dynam-
ics is observed when the neuron undergoes not only phase-dependent continuous weak
stimulation, but also when it is driven by an external phase-independent stimulation. In
the latter case basin boundaries between the synchronized and the quiet regime become
complex and fractal. Simple strategies based on control pulses are not sufficient in these
circumstances, because it becomes difficult to predict the dynamics of the neuron after
the application of the control pulse. Therefore, a new neural control method is proposed.
Initially, a weak phase control strategy is applied until fractal basin boundaries evolve into
a deterministic manifold. Consequently, a single control pulse is immediately applied and
the neuron evolves into the calm state.
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1. Introduction

Numerous techniques based on nonlinear dynamics and
chaos have been extensively used in the past years for
modeling neuronal dynamics - either for continuous mod-
els [1] or for discrete models of neurons [2].

Synchronization processes of the brain is a hot topic
of research during the last decades [3,4]. In several neu-
rological diseases such as Parkinson's disease (PS) or es-
sential tremor (ET), brain function is impaired by patho-
logical synchronization processes [5,6]. It is shown in [7]
that gap junctions play an important role in the synchro-
nization of neuronal ensembles. Post-seizure additions of
gap junctions could serve to prevent further escalations of
the epileptic pathological activity of the brain. However,
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the model in [7] predicts the existence of a critical tip-
ping point after which additional gap junctions no longer
suppress but strongly facilitate the escalation of epileptic
Seizures.

The importance of information transmission delays in
the synchronization across small-world neuronal networks
is investigated in [8]. It is demonstrated in [9] that in-
creasing the coupling strength enhances synchronization of
scale-free neuronal networks monotonously, whereas delay
plays a more subtle role. It is shown in [9] that fine-tuned
information transmission delays are vital for assuring opti-
mally synchronized excitatory fronts on complex neuronal
networks and, indeed, they should be seen as important
as the coupling strength or the overall density of interneu-
ronal connections. It is discussed in [10] that for both at-
tractive and repulsive coupling, the delay always plays a
subtle role in either promoting or impairing synchroniza-
tion in scale-free neuronal networks.

It is shown in [11] that the scale-free nature of
small-world networks, on one hand, facilitates signal
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transduction and thus temporal order in the system,
whilst on the other hand, disrupts the internal spatial
scale of the media thereby hindering the existence of co-
herent wave-like patterns. The existing experiments have
shown that the spatiotemporal pattern and synchroniza-
tion dynamics are very crucial, which are closely related to
normal function and dysfunction of neuronal systems [12].

Electrical deep brain stimulation is one of the standard
treatments of PS and ET [13,14] when a permanent high
amplitude periodic pulse train suppresses neuronal firing
[15,16]. However, the nonlinear dynamics of electrical deep
brain stimulation is not yet fully understood [15]. It is well
known that the therapeutic effect of the stimulation often
decreases over time [17].

Novel pulse-based stimulation techniques are being
developed which enable the selective desynchronization
of pathologically synchronized processes in networks of
phase oscillators as shown in Refs. [18-23]. Standard non-
linear dynamics and chaos methods for the analysis of
neurodynamics can be applied [24]. Though generic phase
oscillators can be used to approximate the dynamics of pe-
riodically active neurons [3,25-27], the pulse-based stim-
ulation requires to take the dendritic dynamics of neu-
rons into account [28-30]. Individual neurons are capable
of exhibiting transient dynamics when exposed to electri-
cal stimulation [31,32]. Incorporation of the dendritic dy-
namics into a generic phase oscillator model helps to de-
scribe the effective inertia of a neuron when the response
of the neuron's state to perturbations is not instantaneous
but exhibits smooth transient dynamics [28,33]. The den-
dritic dynamics significantly changes the response to the
stimulation of a single neuron and a network of synap-
tically interacting neurons [33]. Two stable regimes for a
single neuron with dendritic dynamics can coexist: the os-
cillatory regime, where the stimulation alters only the fir-
ing rate of the neuron, and the quiet regime, where the
neuron stops firing completely [33].

Simple neural networks comprising only two neurons,
one excitatory and the other inhibitory, may result into
complex chaotic dynamics [34].

On the other hand, simple excitatory-inhibitory neural
pairs (which form the building block of larger networks)
subjected to external periodic stimulation may demon-
strate the transition between various types of dynamics,
depending upon the magnitude of the stimulus [35].

It is natural that more complex associative networks
of neurons interconnected through an auto-correlation
synaptic matrix may exhibit even more complex dynam-
ics. However, the external stimulation of such network
corresponding to a specific pattern may result into nearly
periodic dynamics of the whole network [36].

Due to the high degree of connectivity within the brain,
populations of neurons are constantly under the effect of
external synaptic input. And although the firing rates of
cortical background input is relatively low, studies have
demonstrated its dramatic effect on the integrative prop-
erties of neurons in vivo, resulting in extreme variabil-
ity of cortical responses. Therefore, taking into account
the phase-independent external stimulation is justified and
highly relevant for developing a single pulse control strat-
egy for a network of dendritic neurons [37].

The main objective of this paper is to adapt a single
pulse based control strategy for a dendritic neuron driven
by external phase-independent stimulation. Similar control
strategies have been used for a random network of den-
dritic neurons in [38] - but only weak periodic stimula-
tion of the neurons was considered then. As mentioned
previously, phase-independent stimulation may have a dra-
matic effect on the complexity of the dynamics of neurons.
We will demonstrate that basin boundaries of coexisting
states of the neuron with phase-independent stimulation
(the oscillatory firing regime and the quite regime) become
highly complex and fractal. Therefore, the main novelty of
this paper is twofold. First of all, we will develop weak
phase-dependent control techniques which will be used to
eliminate fractal boundaries between the coexisting states
of the neuron. Secondly, we will develop and adapt sin-
gle pulse based reliable control strategy which will be able
to bring the neuron with phase-independent stimulation to
the calm state.

2. The model of a neuron with dendritic dynamics

We will use the model of a neuron where the dynamics
of the dendrite and the phase dynamics of the axon are
described by the following differential equations [33]:

Ui(t) = af(pi(t)) — y ¥+ BE(D), (1)
$i(t) = cPi(t) + ey, (2)

where ; is the dendritic current of the ith neuron, flgy;) is
the synaptic input from the jth neuron, « is the synaptic
strength, ) is the damping inherent in the dendrite, £(1)
is Gaussian white noise, statistically independent for each
neuron, with zero mean and a standard deviation equal to
one, f is the noise intensity, c is the scaling constant and
w is the driving force. The resulting governing differential
equation reads:

Bi(t) = Af (1)) + v (w; — dj(£)) + CBE(L). 3)

where A=c-a and ¢; represents the dendritic currents.
After substituting m = 1/y: v2D = cf/y. and introducing
coupling and stimulation, the governing equation of the
dendritic neuron takes the following form [33]:

me; = w; — ¢; + W +S;(t. ¢;) + V2DE (1), (4)

where m is the effective inertia of the oscillator; W; is the
dynamic coupling between the jth neuron and other neu-
rons of the network and Sj(r, gbj} is the phase-dependent
stimulation of jth neuron [33]:

Si(t, ¢j) = A(t) cos(ey), (5)

where A(t) is a time dependent stimulation intensity func-
tion. The phase of a neuron is normalized to the interval
between 0 and 1. The state of the neuron is described by
the firing function [33]

o) = {1, if cos(2r mod (¢. 1)) = c,

0. otherwise;
where the constant ¢ determines when the phase of the
neuron vanishes (modulus one), e.g., when it fires. We will
assume that ¢ =0.975.

(6)
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Fig. 1. The dynamics of a dendritic neuron driven by a phase-independent stimulation is sensitive to initial conditions - a bounded trajectory (A) coex-
ists with an open phase trajectory (B). The dynamics of the neuron is given by 0.8¢ +0.11¢ + 0.3 sin($) = 0.11 + 0.4 cos(ewt ); the trajectory stays in the
bounded region of phase space when intial conditions are ¢(0) = —1 and ¢(0) = 0 (part A). The phase space trajectory diverges to infinity when the initial

conditions are ¢(0) = —3 and ¢(0) = 1 (part B).

The dynamics of the phase of a single neuron under
continuous excitation (A(t) = a = 0 constant) in absence of
coupling and noise are described by the following differen-
tial equation:

me; =  — ¢ + acos(¢)); (7)

The latter equation represents a nonlinear pendulum
with constant drag moment w. Thus, for a = @, only a
stable limit cycle exists. At a = @ a saddle-note bifurcation
occurs. For a = @ (7) has two types of fixed points: a sta-
ble focus point (¢ = arccos(—w/a); ¢ = 0) and an unstable
saddle point (¢ = — arccos(—w/a); f,b =0). When the exci-
tation intensity a reaches a critical value a, a homoclinic
bifurcation occurs and the stable limit cycle is destroyed.
The system exhibits bistability in the region @w = a = aj:
two stable attractors (the fixed point and the limit cycle)
coexist [33].

The bistability of the system corresponds to two dif-
ferent neural behaviors. The focus point corresponds to a
quiet regime when the neuron does not fire. The limit cor-
responds to an oscillatory regime when the neuron fires
periodically. This coexistence of attractors enables the con-
trol strategy based on short external pulses [38]. Initially
the system oscillates in a limit cycle. A short pulse moves
the system to the basin of attraction of a stable focus point.
The neuron stays calm after transitional processes cease
down [38].

3. The model of the dendritic neuron driven by a
phase-independent stimulation

The model of a single neuron with dendritic dynamics
comprises a phase-dependent periodic stimulation Sj(r. qu)
[33]; the dynamics of networks of such neurons is well ex-
plored [33,39,40]. But it is well known that the stimulation
of a neuron can also be phase-independent [41].

Therefore we will consider a model of the dendritic
neuron described by the following equation:

me + hé + asing = h + beos(w(t +ty)) (8)

This non-autonomous equation describes the phase dy-
namics of the dendritic neuron (in the absence of cou-
pling and noise) which is additionally perturbed by an
external phase-independent harmeonic stimulation. Here, h
represents the damping coefficient, a is the amplitude of
the phase-dependent stimulation of the neuron, b is the
amplitude of the phase-independent stimulation and w is
the external stimulation frequency (note the difference be-
tween h and @). We fix the parameter values m=08, h =
0.11, a=0.3, b=04, @ =0.85 in our computational sim-
ulations.

It can be noted that the solutions of (8) cannot be rep-
resented by a 2-dimensional phase plane diagram. Never-
theless, this model of the neuron exhibits different behav-
ior for certain values of the amplitude b. A bounded at-
tractor coexists with an open phase trajectory at b=0.4
(Fig. 1A and B); the evolution of the system is dependent
to initial conditions. Basins of attraction of these two dis-
tinct regimes are plotted in Fig. 2A: black dots denote ini-
tial conditions which result in a periodic bounded attrac-
tor; white dots mark initial conditions resulting in open
trajectories.

In the analogy to the model of the dendritic neuron
without external phase-independent stimulation we as-
sume that a bounded trajectory corresponds to the quiet
regime and the open trajectory represents the firing of
the neuron. The state of the neuron will be described
by the firing function o/(¢) (though several modifica-
tions compared to the standard model of the dendritic
neuron are necessary). First we introduce a substitution
@ = ¢ + arccos(—ew/a) which enables a correct classifi-
cation of states along the whole axis ¢ =0 by utilizing
the modulo operation the divisor of which has been
multiplied by 27 in order to avoid spikes that would
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Fig. 2. Phase control can eliminate fractal basin boundaries. Basin boundaries of the neuron driven by a phase-independent stimulation 0.8¢ + 0.11¢) +
0.3sin(¢) = 0.11 + 0.4 cos(0.85t) are fractal when no phase control is applied (part A). Black dots denote points which stay in the bounded region of
the phase space while white dots denote points which escape to infinity. The basin of attraction is no longer fractal when phase control is applied:
0.8¢ + 0.11¢ + (0.3 + ag cos(0.85t + ) ) sin(¢h) = 0.11 + 0.4 cos(0.85¢) at ap = 0.14; & = 37/2 (part B).

otherwise be generated by a bounded phase plane tra-
jectory. The reasoning for these modifications is based on
the fact that bounded trajectories occur within the regions
(—arccos(—w/a) + 2mk; —arccos(—w/a) +2m(k+1)), k<
Z which follows from the dynamics of the dendritic
neuron without external phase-independent stimulation
(Fig. 5). Thus the modified function reads:

1, if cos(2r M@ . ¢

o(p) = iO. otherwise; (9

where the divisor d = 2.

It can be observed that basin boundaries computed for
(8) have fractal structure (b=0.4; Fig. 2A). Fractal basin
boundaries are typical phenomena in nonlinear dynamical
systems. In general, a neural control strategy based on a
short pulse fails to perform in a satisfactory way (Fig. 3). A
short control pulse applied at the time t changes the con-
ditions of the system instantaneously. The neuron calms
down if the new state of the system corresponds to ini-
tial conditions of a bounded trajectory. But if the pulse
is a little stronger the system evolves into an unbounded
trajectory and the neuron continues firing (basin bound-
aries are fractal). Therefore, the control strategy based in a
single strong pulse becomes unpredictable as the state of
the neuron cannot be predicted due to the fractal nature
of the basins of attraction. The pulse-based neuron control
strategy could be applicable if only the fractal structure of
the basin of attraction could be converted into a smooth
boundary beforehand.

It is well known that nonlinear oscillators can be con-
trolled by a weak phase control method [42]. Phase con-
trol has also been attempted in order to control chaos
in the nonlinear pendulum, a similar system to our neu-
ron model [43]. We introduce a harmonic perturbation
of the parameter a which represents the amplitude of

¢ @

Fig. 3. Neuron dynamics control techniques based on an external pulse
may fail when basin boundaries are fractal. The fractal basin of attrac-
tion for the equation 0.8¢ + 0.11¢ + 0.3sin(¢) = 0.11 + 0.4 cos(0.85¢) is
shown at the bottom of both graphs (parts A and B). The control pulse
(the strength of the pulse equals —19.45) brings the system to the basin
of attraction of the bounded trajectory (neuron dynamics are represented
by a thick red solid line). However, a slightly weaker pulse (the strength
of the pulse equals —19.40) results in an unbounded trajectory. (For in-
terpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).

the phase-dependent stimulation of the system. In other
words, though we cannot control the external phase-
independent stimulation of the neuron, we still can control
the phase-dependent stimulation. The model of the system
then reads:

Mg + hep + (@ + ao COS(w(t + to) + @)) sin(¢h)
= h+bcos(ew(t +to)) (10)

where ag is the amplitude of the harmonic perturbation of
the phase-dependent stimulation and « is the phase dif-
ference between the perturbation and the external phase-
independent stimulation (note that the frequency of the
internal perturbation is equal to the frequency of the ex-
ternal perturbation [42]). We set ay = 0.14 in our simula-
tions.
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Fig. 4. The elimination of fractal basin boundaries by varying the parameter « (the phase difference between the perturbation and the external phase-
independent stimulation). As described in [42], the best results are obtained by setting & = ¥ ; basin boundaries become deterministic at this value of .
The amplitude of the harmonic perturbation ap is set to 0.14 for all computational experiments.
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Fig. 5. Periodic bounded trajectories (corresponding to the quiet regime of the neuron) do not produce spikes when using the medified neuron firing
function o (). The grid lines mark the values — arccos(—w/a) + 2mk; k e £. The trajctory in the phase plane is shown in (A): notice how the periodic
behavior (which corresponds to the quiet regime) is confined to the interval (—arccos(—w/a) + 2mwk; —arccos{—w/a) +2m(k+ 1)), k € Z. The graph of
@(t) helps visualize the evolution of the system with time - pulses are only generated when values of ¢ cross the grid lines (B). The corresponding
variation of the state on the neuron is illustrated in (C).

It is interesting to note that the basin of attraction non-autonomous dynamical system. Thus, smooth basin
of (10) has a complex structure. But fractal basin bound- boundaries can be produced by applying the weak phase
aries disappear at « =3mw/2 (Fig. 2B and Fig. 4). The control technique, but the particular shape of the smooth
smoothness of the boundaries of the basin of attraction boundaries depends on the initial times fp. Thus, initial
now can ensure that the control strategy based on a conditions corresponding to an open trajectory at time
single control pulse can work well. Nevertheless, the tp may correspond to a bounded trajectory at another

modified model of the neuron represents a nonlinear time t;.
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Fig. 6. The construction of a combined basin boundary for the neuron driven by phase-dependent stimulation. Small figures correspond to the basin
boundaries of the system at different initial times tp. The large figure is an arithmetic mean of all individual basin boundaries (small figures) and presents
a combined basin boundary. Black dots denote initial conditions of the bounded trajectories; white dots denote initial conditions of open trajectories for
all initial times tp. Different grayscale levels correspond to the fraction of initial conditions (¢, ¢) of the bounded trajectories calculated at different initial

times fp.

Fig. 7. The combined non-fractal basin of attraction for the neuron driven
by an external phase-independent stimulation and harmonic perturbation
of the controllable phase-dependent stimulation 0.8¢ +0.11¢ + (0.3 +
agcos(0.85(t +tp) + 3 ))sin(¢) = 0.11 + 0.4 cos(0.85(t +1p)) is shown
at the bottom of the 3-dimensional graph. The control pulse calms the
neuron (the trajectory of the system is illustrated by a thick red solid
line). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article).

Therefore, a combined basin of attraction is constructed
for every time 0 = t; = 2m/w (Fig. 6). A number of
smoothed basin boundaries are constructed for several dis-
crete values of f,. It is important to note that the phase
shift of the internal perturbation « =3 /2 is fixed for all
different initial time t; (this is the optimal phase shift

when the annihilation of the fractal boundaries is con-
sidered). Next, we average all smoothed basin boundaries.
White regions represent initial condition of open trajecto-
ries for all initial times; black regions denote initial condi-
tions of bounded trajectories for all initial times; and the
grey regions represent initial conditions which fall into the
attractor for some values of t; and diverge to infinity at
others. Now, a predictable control strategy based on a sin-
gle control pulse can be considered.

The system moves from an open to a bounded trajec-
tory after a single pulse is applied if the strength of the
pulse is sufficient (Fig. 7).

4. Conclusions

Control strategies based on weak phase synchroniza-
tion are developed for a dendritic neuron driven by exter-
nal phase-independent stimulation. The control strategy is
based on a single control pulse which pushes the system
into the basin of attraction of the stable bounded trajec-
tory. Unfortunately, basin boundaries of coexisting states
(the oscillatory synchronized regime and the quite regime)
are fractal. The control method becomes unreliable due to
the simple reason that the evolution of the neuron (af-
ter the impulse is applied) becomes unpredictable. Weak
phase synchronization helps to overcome the mentioned
difficulties. Fractal basin boundaries between the firing and
the calm state of the neuron evolve into a smooth manifold
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when weak phase synchronization is turned on. Then, the
control strategy based on a single control pulse works well
and the dynamics of the dendritic neuron evolves into a
calm state. So far, we have conducted the analysis of a sin-
gle neuron, however, the application of these ideas to the
control of a neural network is a definite object of future
research.
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