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Te concept of a hyper coupled map lattice (CML) is presented in this paper. Te complexity of the lattice is increased not by
adding another spatial dimension of the lattice but by replacing scalar nodal variables by multidimensional square matrices of
iterative variables. Te proposed scheme exploits the nonlinear efects of the spatiotemporal divergence induced by nilpotent
nodal matrices to generate separate secret images at diferent discrete moments of time during the evolution of the CML.Te time
variable plays the primary role in the decoding stage of the scheme.Te carrying capacity of the proposed scheme is n − 1 diferent
dichotomous digital images, where n is the dimension of the nilpotent nodal matrices. Computational experiments are used to
demonstrate the efcacy of the proposed scheme.

1. Introduction

Coupled map lattice (CML) is a classical spatiotemporal
chaotic system with complex dynamic behavior. CML was
formally proposed by Kaneko in 1984 [1–3], where each
node is coupled with its closest neighbors. Since then, many
types of coupling were introduced [4–13]. A one-way
coupling map lattice is used to derive a cryptosystem key
generator in [4]. A nonadjacent coupled map lattice, where
connected nodes are dynamically determined through
a nonlinear Arnold cat map, is applied to difuse color
channels in image DNA encryption algorithm in [5].
Nonlinear (mixed adjacent and nonadjacent) coupled map
lattices enabled an image encryption algorithm with si-
multaneous permutation and difusion process [6, 7]. Dy-
namically coupled map lattices are based on the idea to use
chaotic map or other function as the coupling coefcient in
order to ensure the changing degree of the coupling between
lattices [8]. A pseudorandom coupled map lattices system
with perturbation is proposed in [9]. Wang et al. [10]
proposed a new scrambling method based on customized
globally CML including a superposition of four chaotic maps
as a coupling term. Te scheme of pseudorandom number
generator combines the improved CML and time-varying

delay in [11]. CML extensions when a scalar variable is
replaced by a square matrix of variables are introduced in
[12, 13].

Images play a signifcant role in many applications in-
cluding personal use, commerce, medicine, and the military
[14]. Tese images often contain confdential and sensitive
information that needs to be protected from unauthorized
access [15]. Technology advances lead to a phenomenal
increase in virtual communication and information in-
terchange. Terefore, image security became an inescapable
problem of high importance in diferent areas [16]. Te
confdentiality of digital image can be maintained by data
encryption [17, 18]. A variety of techniques for encrypting
images include cryptography [19, 20], watermarking [21, 22],
and steganography [23, 24].

Various coverless steganography methods are reviewed
in [25], along with a survey of fundamental approaches
based on hashing techniques, mapping relations, and feature
extraction. A coverless image steganography framework is
proposed in [26], where appropriate original images already
containing the secret data are chosen from a constructed
database and are used as stego images, which makes it robust
against steganalysis. Te steganography without embedding
technique based on generative adversarial networks is
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introduced in [27], where the generated cover images
themselves are stego images carrying secret information. A
coverless information hiding method where a secret image is
embedded into a public image and then the obtained syn-
thetic image is used as an input to the hiding method based
on a generative model is investigated in [28]. Hiding ca-
pacity, success rate, and security are improved by the sug-
gested coverless information hiding technique based on the
retrieval of the massive amount of web text on the Internet
using a web spider technology [29].

Te potential for the exploitation of chaos in cryptog-
raphy and steganography has gained interest in the past few
decades [30–33]. Since the pioneering work on chaos-based
image encryption by Fridrich in 1997 [30], many in-
formation encryption schemes have been proposed based on
continuous time [31, 32], discrete time [34, 35], and frac-
tional [36, 37] chaotic systems. Image encryption techniques
based on discrete chaotic maps are more often used due to
simple structure and faster operational speed [38]. Te main
idea of a discrete chaos-based image encryption algorithm is
based on the system’s ability to produce pseudorandom
numbers; therefore, the selection of a proper chaotic map is
a primary task in any image hiding application [33]. Several
chaotic maps have been employed in the algorithms of image
encryption including the logistic map [39–41], tent map
[42, 43], Arnold map [44, 45], circle map [46], Henon map
[47, 48], and Baker map [49, 50].

Image encryption schemes based on coupledmap lattices
(CML) have attracted the attention of many researchers, as
spatiotemporal chaotic systems do possess the advantages of
more complex dynamical behavior and lower computational
overhead compared to a single chaotic map [51]. An image
encryption scheme with the permutation difusion mecha-
nism based on 1D CML with a local map defned as
a nonlinear chaotic algorithm is proposed in [52].Te cipher
based on 2D chaotic lattices is presented in [53], where
lattices are used both to generate pseudorandom sequences
and encrypt image blocks one by one. Logistic, sine, and tent
maps are mixed into one CML in order to provide a more
secure scheme to encrypt image [54]. A novel image en-
cryption scheme employing a pseudorandom coupled map
lattices model based on hybrid elementary cellular automata
and the Chirikov standard map is presented in [9].Te efect
of temporary divergence in a CML of nilpotent matrices of
order 2 is exploited for the construction of an image hiding
scheme in [55, 56].

Beside schemes suitable to hide a single image, multi-
image hiding methods have also been proposed. A multiple
image hiding framework based on joint compressive
autoencoders when is provided in [57]. A technique for
hiding multi-images in an image using the least signifcant
bit algorithm and Arnold transformation is presented in
[58]. An invertible neural network is used in the multiple
images hiding framework [59]. A multilayered embedded
technique, where images are frst unifed to one and then the
composited image is encrypted in the pattern of difusion-
scrambling-nonlinear transform is proposed in [60]. It can
be noted that all these techniques aim to hide multiple secret
images into a single cover image. All these techniques use

diferent transformations of the single cover image. Te
main diference of the proposed scheme from the mentioned
methods is based on the spatiotemporal properties of the
introduced CML. In other words, the proposed scheme
exploits the nonlinear efects of spatiotemporal divergence
exhibited by a special type of CML used to generate separate
secret images at diferent discrete moments of time during
the evolution of the CML. Tis is the main advantage of the
proposed scheme in regards to the previously discussed
methods, as the time variable now plays the primary role in
the decoding stage of the scheme.

Te main purpose of this study is to employ a single
coupled map lattice of higher-order nilpotent matrices and
their properties of temporary divergence in order to hide
multiple secret images without unifying those images into
a single cover image. A new type of multiple images hiding
scheme in a coupled map lattice of nilpotent matrices is
developed for these purposes. Te paper is structured as
follows. An overview of the dynamics of a single iterative
map of matrices as well as the dynamics of the two-
dimensional lattice of matrices is discussed in Sections 2.
Te concept and the properties of the hyper CML are in-
troduced and discussed in Section 3.Te encoding scheme of
multiple images and supporting computational experiments
are provided in Section 4. Concluding remarks are given in
the last section.

2. Preliminaries

2.1.Te Iterative Map ofMatrices of Order 2. Let us consider
a scalar iterative map

x
(t+1)

� f x
(t)

􏼐 􏼑, t � 0, 1, 2, . . . , (1)

where x(0) ∈ R is the initial condition and the mapping
function f can be expanded into a formal power series:

f(z) � 􏽘
∞

k�0
ck

z
k

k!
, (2)

where z ∈ R, ck ∈ R. Te scalar variable x(t) in (1) can be
replaced by a second-order square matrix of variables

X(t) �
x

(t)
11 x

(t)
12

x
(t)
21 x

(t)
22

􏼢 􏼣, where each element of the matrix is

a separate scalar variable: x
(t)
11 , x

(t)
12 , x

(t)
21 x

(t)
22 ∈ R [61, 62].

Ten, the iterative map of matrices reads

X(t+1)
� f X(t)

􏼐 􏼑, t � 0, 1, 2, . . . . (3)

It appears that the dynamics of such an iterative map of
matrices depends on the matrix of initial conditions X(0)

[61, 62]. If the eigenvalues of X(0) are diferent (λ(0)
1 ≠ λ

(0)
2 ),

then the matrix of initial conditions can be expressed in the
form of an idempotent matrix:

X(0)
� λ(0)

1 D1 + λ(0)
2 D2, (4)

where D1 and D2 are conjugate idempotents. Te following
properties do hold for conjugate idempotents: det(D1)

� det(D2) � 0; D1 + D2 � I; D1D1 � D1; D2D2 � D2;
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D1D2 � D2D1 � Θ, where I and Θ are the second-order
identity and zero matrices.

Te evolution of (3) starting with an idempotent 2 × 2
matrix results into two scalar iterative maps of the eigen-
values [62]:

λ(t+1)
1 � f λ(t)

1􏼐 􏼑,

λ(t+1)
2 � f λ(t)

2􏼐 􏼑,

⎧⎪⎨

⎪⎩
t � 0, 1, 2, . . . . (5)

However, if the eigenvalues of X(0) do coincide
(λ(0)

1 � λ(0)
2 � λ(0)

0 ), then the matrix of initial conditions can
be expressed in the form of a nilpotent matrix:

X(0)
� λ(0)

0 I + μ(0)
1 N, (6)

where μ(0)
1 is an auxiliary parameter; N is a nilpotent. Te

following properties do hold for a nilpotent: N2 � Θ;
det(N) � 0. If the matrix of initial conditions X(0) is a nil-
potent matrix, then the matrices produced by the iterative
map are also nilpotent matrices:

X(t+1)
� f X(t)

􏼐 􏼑 � 􏽘
∞
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ck
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2
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+ · · · +
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k
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λ(t)
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μ(t)
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� 􏽘
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k!
k λ(t)

0􏼐 􏼑
k−1

⎛⎝ ⎞⎠μ(t)
1 N

� f λ(t)
0􏼐 􏼑I + μ(t)

1 f
′ λ(t)

0􏼐 􏼑N,

(7)

where t � 0, 1, . . ., μ(0)
1 ≠ 0;

k

p
􏼠 􏼡 � k!/(p!(k − p)!) is a bi-

nomial coefcient; f′(λ(t)
0 ) denotes the derivative of f

computed at λ(t)
0 [61]. Terefore, the model (3) initialized

with a nilpotent 2 × 2 matrix results into two intertwined
scalar iterative maps [61, 62]:

λ(t+1)
0 � f λ(t)

0􏼐 􏼑,

μ(t+1)
1 � μ(t)

1 f
′ λ(t)

0􏼐 􏼑,

⎧⎪⎨

⎪⎩
t � 0, 1, 2, . . . ; μ(0)

1 ≠ 0, (8)

where the initial condition of the scalar map of eigenvalues is
λ(0)
0 . Note that the second scalar iterative map in (8) defnes
the evolution of the auxiliary parameter μ(t)

1 where the
derivative of the mapping function is computed at λ(t)

0 .
Te efect of the explosive divergence of μ(t)

1 is observed
when the Lyapunov exponent of the original scalar iterative
map (1) becomes positive [62].

2.2. Te Coupled Map Lattice of the Second-Order Nilpotent
Matrices. Let us consider the classical two-dimensional
CMLmodel [3] defned on a square lattice [1, Nx] × [1, Ny]:

x
(t+1)

(i, j) � (1 − ε)f x
(t)

(i, j)􏼐 􏼑

+
ε
4

f x
(t)

(i + 1, j)􏼐 􏼑 + f x
(t)

(i − 1, j)􏼐 􏼑􏼐

+f x
(t)

(i, j + 1)􏼐 􏼑 + f x
(t)

(i, j − 1)􏼐 􏼑􏼑,

(9)

where t � 0, 1, 2, . . .; x(t)(i, j) is the discrete state variable;
indices (i, j) denote the position of the node
(i � 1, 2, . . . , Nx, j � 1, 2, . . . , Ny); f is the scalar mapping
function; ε is the coupling parameter (0≤ ε≤ 1).

Te scalar nodal variable x(t)(i, j) in (9) can be replaced
by the square matrix X(t)(i, j) ∈ R2×2. Such a replacement
results into a CML of matrices [55]. It appears that the
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dynamics of CML of matrices also depends on the type of the
matrix of initial conditions [55]. Now, the dynamics of CML
of 2 × 2 nilpotent matrices is governed by the following
iterative model [55]:

λ(t+1)
0 (i, j) � f λ(t)

0 (i, j)􏼐 􏼑,

μ(t+1)
1 (i, j) � (1 − ε)μ(t)

1 (i, j)f
′ λ(t)

0 (i, j)􏼐 􏼑

+
ε
4

μ(t)
1 (i + 1, j)f

′ λ(t)
0 (i + 1, j)􏼐 􏼑􏼒

+μ(t)
1 (i − 1, j)f

′ λ(t)
0 (i − 1, j)􏼐 􏼑

+μ(t)
1 (i, j + 1)f

′ λ(t)
0 (i, j + 1)􏼐 􏼑

+μ(t)
1 (i, j − 1)f

′ λ(t)
0 (i, j − 1)􏼐 􏼑􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where μ(0)
1 (i, j) is the nodal auxiliary parameter; λ(0)

0 (i, j) is
the recurrent eigenvalue of the matrix of initial conditions at
the node (i, j).

2.3. Image Hiding Scheme in a CML of Two-Dimensional
Matrices. Te efect of temporary divergence in a CML of
two-dimensional matrices enables to construct the image
hiding scheme which does not require a diferent image for
the retrieval of the secret image [55]. Te CML of two-
dimensional matrices is perturbed at the nodes corre-
sponding to the dot skeleton representation of the secret
image [55].

Te evolution of patterns produced by the CML of two-
dimensional matrices yield the secret image. Te number of
time-forward iterations required to produce the pattern
closest to the original secret image is one of the parameters of
the image-hiding scheme presented in [55].

2.4. Iterative Map of Matrices of Order n. Te natural ex-
tension of the iterative map of 2 × 2 matrices discussed in
Section 2.1 is based on the larger dimension of the matrix.
Te scalar variable x(t) in (1) can be replaced by a square
matrix of order n [56].

It appears that the dynamics of the iterative map of
matrices of order n is much more complex if compared to
the iterative map of matrices of order 2 [56]. Te number of
diferent scenarios is now predetermined by the current
packing code which defnes the recurrence indices of ei-
genvalues of the matrix of initial conditions [56]. In analogy
to the iterative map of matrices of order 2, the iterative map
of order n splits into n independent scalar iterative maps of
eigenvalues if only all eigenvalues are diferent (this situation
corresponds to the smallest possible packing code). On the

opposite, when all eigenvalues of the matrix of initial
conditions do coincide (this situation corresponds to the
largest possible packing code), the efect of divergence of the
iterative map of matrices of order n is governed by n − 1
auxiliary parameters μ1, μ2, . . . , μn−1 [56]:

λ(t+1)
0 � f λ(t)

0􏼐 􏼑,

μ(t+1)
1 � μ(t)

1 f
′ λ(t)

0􏼐 􏼑,

μ(t+1)
2 � μ(t)

2 f
′ λ(t)

0􏼐 􏼑 +
μ(t)
1􏼐 􏼑

2

2!
f
″ λ(t)

0􏼐 􏼑,

μ(t+1)
3 � μ(t)

3 f
′ λ(t)

0􏼐 􏼑 +
2μ(t)

1 μ(t)
2

2!
f
″ λ(t)

0􏼐 􏼑 +
μ(t)
1􏼐 􏼑

3

3!
f
‴ λ(t)

0􏼐 􏼑,

μ(t+1)
4 � μ(t)

4 f
′ λ(t)

0􏼐 􏼑 +
2μ(t)

1 μ(t)
3 + μ(t)

2􏼐 􏼑
2

2!
f
″ λ(t)

0􏼐 􏼑

+
3 μ(t)

1􏼐 􏼑
2
μ(t)
2

3!
f
‴ λ(t)

0􏼐 􏼑 +
μ(t)
1􏼐 􏼑

4

4!
f

iv λ(t)
0􏼐 􏼑,

· · ·

μ(t+1)
n−1 � μ(t)

n−1f
′ λ(t)

0􏼐 􏼑 +
􏽐

n−2
i1�1 μ

(t)
i1
μ(t)

n−1−i1

2!
f
″ λ(t)

0􏼐 􏼑

+
􏽐

i1+ i2+ i3 � n − 1
1≤i1,i2 ,i3≤n − 3 μ(t)

i1
μ(t)

i2
μ(t)

i3

3!
f
‴ λ(t)

0􏼐 􏼑

+ · · · +
μ(t)
1􏼐 􏼑

n− 1

(n − 1)!
f

(n− 1) λ(t)
0􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where μ(0)
l and l � 1, 2, . . . , n − 1 are auxiliary parameters,

and f(s) denotes the s order derivative of the mapping
function f.

3. The Governing Equations for a Hyper CML

Let us consider a 2D CML of scalar maps where each discrete
node is coupled with its four closest neighbors on a rect-
angular domain [1, Nx] × [1, Ny]. Let us replace each scalar
nodal variable by a n-dimensional square matrix of discrete
variables.

Defnition 1. Hyper CML is a 2D CML such that as follows:

(1) Each scalar discrete node is replaced by an n-di-
mensional square matrix of discrete variables

(2) Te size of the matrix n is the same for each node
(3) Te divergence code for each nodal matrix is

[0 1 2 . . . (n − 2)(n − 1)]

(4) Te nilpotent of each nodal matrix is the same (note
that this condition does not require the recurrent
eigenvalue of the nodal matrix to be the same at each
node).
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Corollary 2. If a CML is a hyper CML at t � 0, then the CML
will remain a hyper CML in every discrete time-forward step
t � 1, 2, . . ..

Proof. Te proof follows directly from the structure of the
CML lattice and equation (11). □

Example 1. Let us consider a hyper CML at iteration t.
Without loss of generality, let us consider the node (i, j) and
its four neighbors only. Also, let us consider that the di-
mension of nodal matrices is 2 × 2. All fve nodal nilpotent

are set to N �
−0.3 0.9
−0.1 0.3􏼢 􏼣.

Te nodal mapping function f is set at the logistic
mapping function: x(t+1) � 3.6x(t)(1 − x(t)). Te coupling
parameter ε is set to 0.1.Ten, a single time-forward iteration
produces new nodal matrices (according to equation (12)).
However, the ofspring CML is still a hyper CML because all
fve nodal nilpotent remain unchanged (Table 1).

Te governing equations of a hyper CML follow from the
algebraic structure of the iterative nilpotent matrices with
the largest divergence code:

λ(t+1)
0 (i, j) � f λ(t)

0 (i, j)􏼐 􏼑,

μ(t+1)
1 (i, j) � (1 − ε)μ(t)

1 (i, j)f
′ λ(t)

0 (i, j)􏼐 􏼑

+
ε
4

μ(t)
1 (i + 1, j)f

′ λ(t)
0 (i + 1, j)􏼐 􏼑􏼒

+ μ(t)
1 (i − 1, j)f

′ λ(t)
0 (i − 1, j)􏼐 􏼑

+ μ(t)
1 (i, j + 1)f

′ λ(t)
0 (i, j + 1)􏼐 􏼑

+ μ(t)
1 (i, j − 1)f

′ λ(t)
0 (i, j − 1)􏼐 􏼑􏼓,

μ(t+1)
2 (i, j) � (1 − ε) μ(t)

2 (i, j)f
′ λ(t)

0 (i, j)􏼐 􏼑 +
μ(t)
1 (i, j)􏼐 􏼑

2

2!
f
″ λ(t)

0 (i, j)􏼐 􏼑⎛⎝ ⎞⎠

+
ε
4

μ(t)
2 (i + 1, j)f

′ λ(t)
0 (i + 1, j)􏼐 􏼑 +

μ(t)
1 (i + 1, j)􏼐 􏼑

2

2!
f
″ λ(t)

0 (i + 1, j)􏼐 􏼑⎛⎝

+ μ(t)
2 (i − 1, j)f

′ λ(t)
0 (i − 1, j)􏼐 􏼑 +

μ(t)
1 (i − 1, j)􏼐 􏼑

2

2!
f
″ λ(t)

0 (i − 1, j)􏼐 􏼑

+ μ(t)
2 (i, j + 1)f

′ λ(t)
0 (i, j + 1)􏼐 􏼑 +

μ(t)
1 (i, j + 1)􏼐 􏼑

2

2!
f
″ λ(t)

0 (i, j + 1)􏼐 􏼑

+ μ(t)
2 (i, j − 1)f

′ λ(t)
0 (i, j − 1)􏼐 􏼑 +

μ(t)
1 (i, j − 1)􏼐 􏼑

2

2!
f
″ λ(t)

0 (i, j − 1)􏼐 􏼑⎞⎠,

· · ·

μ(t+1)
n−1 (i, j) � (1 − ε) μ(t)

n−1(i, j)f
′ λ(t)

0 (i, j)􏼐 􏼑􏼒

+
􏽐

n−2
i1�1 μ

(t)
i1

(i, j)μ(t)
n−1−i1

(i, j)

2!
f
″ λ(t)

0 (i, j)􏼐 􏼑

Complexity 5



+
􏽐

i1+i2+i3�n−1
1≤ i1 ,i2 ,i3 ≤ n−3 μ

(t)
i1

(i, j)μ(t)
i2

(i, j)μ(t)
i3

(i, j)

3!
f
″ λ(t)

0 (i, j)􏼐 􏼑

+ · · · +
μ(t)
1 (i, j)􏼐 􏼑

n− 1

(n − 1)!
f

(n− 1) λ(t)
0 (i, j)􏼐 􏼑⎞⎠

ε
4

μ(t)
n−1(i + 1, j)f

′ λ(t)
0 (i + 1, j)􏼐 􏼑􏼒

+
􏽐

n−2
i1�1 μ

(t)
i1

(i + 1, j)μ(t)
n−1−i1

(i + 1, j)

2!
f
″ λ(t)

0 (i + 1, j)􏼐 􏼑

+
􏽐

i1+i2+i3�n−1
1≤ i1 ,i2 ,i3 ≤ n−3 μ

(t)
i1

(i + 1, j)μ(t)
i2

(i + 1, j)μ(t)
i3

(i + 1, j)

3!
f
‴ λ(t)

0 (i + 1, j)􏼐 􏼑

+ · · · +
μ(t)
1 (i + 1, j)􏼐 􏼑

n− 1

(n − 1)!
f

(n− 1) λ(t)
0 (i + 1, j)􏼐 􏼑

+ μ(t)
n−1(i − 1, j)f

′ λ(t)
0 (i − 1, j)􏼐 􏼑

+
􏽐

n−2
i1�1 μ

(t)
i1

(i − 1, j)μ(t)
n−1−i1

(i − 1, j)

2!
f
″ λ(t)

0 (i − 1, j)􏼐 􏼑

+
􏽐

i1+i2+i3�n−1
1≤ i1 ,i2 ,i3 ≤ n−3 μ

(t)
i1

(i − 1, j)μ(t)
i2

(i − 1, j)μ(t)
i3

(i − 1, j)

3!
f
‴ λ(t)

0 (i − 1, j)􏼐 􏼑

+ · · · +
μ(t)
1 (i − 1, j)􏼐 􏼑

n− 1

(n − 1)!
f

(n− 1) λ(t)
0 (i − 1, j)􏼐 􏼑

+ μ(t)
n−1(i, j + 1)f

′ λ(t)
0 (i, j + 1)􏼐 􏼑

+
􏽐

n−2
i1�1 μ

(t)
i1

(i, j + 1)μ(t)
n−1−i1

(i, j + 1)

2!
f
″ λ(t)

0 (i, j + 1)􏼐 􏼑

+
􏽐

i1+i2+i3�n−1
1≤ i1 ,i2 ,i3 ≤ n−3 μ

(t)
i1

(i, j + 1)μ(t)
i2

(i, j + 1)μ(t)
i3

(i, j + 1)

3!
f
‴ λ(t)

0 (i, j + 1)􏼐 􏼑

+ · · · +
μ(t)
1 (i, j + 1)􏼐 􏼑

n− 1

(n − 1)!
f

(n− 1) λ(t)
0 (i, j + 1)􏼐 􏼑

+ μ(t)
n−1(i, j − 1)f

′ λ(t)
0 (i, j − 1)􏼐 􏼑

+
􏽐

n−2
i1�1 μ

(t)
i1

(i, j − 1)μ(t)
n−1−i1

(i, j − 1)

2!
f
″ λ(t)

0 (i, j − 1)􏼐 􏼑

+
􏽐

i1+i2+i3�n−1
1≤ i1 ,i2 ,i3 ≤ n−3 μ

(t)
i1

(i, j − 1)μ(t)
i2

(i, j − 1)μ(t)
i3

(i, j − 1)

3!
f
‴ λ(t)

0 (i, j − 1)􏼐 􏼑

+ · · · +
μ(t)
1 (i, j − 1)􏼐 􏼑

n− 1

(n − 1)!
f

(n− 1) λ(t)
0 (i, j − 1)􏼐 􏼑⎞⎠,

(12)

where indices (i, j) denote the coordinates of the current
node (i � 1, 2, . . . , Nx, j � 1, 2, . . . , Ny); λ(0)

0 (i, j) is the
recurrent eigenvalue of the matrix of initial conditions at the
node (i, j); μ(0)

1 (i, j)≠ 0.

3.1.TeHyper CML of the Logistic Maps. Let us consider the
scalar logistic map x(t+1) � ax(t)(1 − x(t)) [63] with 0< a≤ 4
and 0≤x(0) ≤ 1. Te scalar nodal variable of the logistic map
is replaced by an n × n matrix with the largest divergence
code [0 1 2 . . . (n − 2)(n − 1)]. Te iterative equations

defning the evolution of the logistic map are now reduced as
higher derivatives of the scalar logistic mapping function do
vanish:

λ(t+1)
0 � aλ(t)

0 1 − λ(t)
0􏼐 􏼑;

μ(t+1)
1 � aμ(t)

1 1 − 2λ(t)
0􏼐 􏼑;

μ(t+1)
2 � aμ(t)

2 1 − 2λ(t)
0􏼐 􏼑 − a μ(t)

1􏼐 􏼑
2
;

. . .

μ(t+1)
n−1 � aμ(t)

n−1 1 − 2λ(t)
0􏼐 􏼑 − a 􏽘

n−2

i1�1
μ(t)

i1
μ(t)

n−1−i1
;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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where μ(0)
1 ≠ 0. Let us construct a hyper CML of logistic maps on the

rectangular domain [1, Nx] × [1, Ny]. Te governing
equations of a hyper CML follow from (13):

λ(t+1)
0 (i, j) � aλ(t)

0 (i, j) 1 − λ(t)
0 (i, j)􏼐 􏼑,

μ(t+1)
1 (i, j) � (1 − ε)aμ(t)

1 (i, j) 1 − 2λ(t)
0 (i, j)􏼐 􏼑

+
ε
4

aμ(t)
1 (i + 1, j) 1 − 2λ(t)

0 (i + 1, j)􏼐 􏼑􏼐

+ aμ(t)
1 (i − 1, j) 1 − 2λ(t)

0 (i − 1, j)􏼐 􏼑

+ aμ(t)
1 (i, j + 1) 1 − 2λ(t)

0 (i, j + 1)􏼐 􏼑

+ aμ(t)
1 (i, j − 1) 1 − 2λ(t)

0 (i, j − 1)􏼐 􏼑􏼑,

μ(t+1)
2 (i, j) � (1 − ε) aμ(t)

2 (i, j) 1 − 2λ(t)
0 (i, j)􏼐 􏼑 − a μ(t)

1 (i, j)􏼐 􏼑
2

􏼒 􏼓

+
ε
4

aμ(t)
2 (i + 1, j) 1 − 2λ(t)

0 (i + 1, j)􏼐 􏼑 − a μ(t)
1 (i + 1, j)􏼐 􏼑

2
􏼒

+ aμ(t)
2 (i − 1, j) 1 − 2λ(t)

0 (i − 1, j)􏼐 􏼑 − a μ(t)
1 (i − 1, j)􏼐 􏼑

2

+ aμ(t)
2 (i, j + 1) 1 − 2λ(t)

0 (i, j + 1)􏼐 􏼑 − a μ(t)
1 (i, j + 1)􏼐 􏼑

2

+ aμ(t)
2 (i, j − 1) 1 − 2λ(t)

0 (i, j − 1)􏼐 􏼑 − a μ(t)
1 (i, j − 1)􏼐 􏼑

2
􏼓,

· · ·

μ(t+1)
n−1 (i, j) � (1 − ε) aμ(t)

n−1(i, j) 1 − 2λ(t)
0 (i, j)􏼐 􏼑􏼐

−a 􏽘
n−2

i1�1
μ(t)

i1
(i, j)μ(t)

n−1−i1
(i, j)⎞⎠

ε
4

aμ(t)
n−1(i + 1, j) 1 − 2λ(t)

0 (i + 1, j)􏼐 􏼑􏼐

− a 􏽘
n−2

i1�1
μ(t)

i1
(i + 1, j)μ(t)

n−1−i1
(i + 1, j)

+ aμ(t)
n−1(i − 1, j) 1 − 2λ(t)

0 (i − 1, j)􏼐 􏼑

− a 􏽘
n−2

i1�1
μ(t)

i1
(i − 1, j)μ(t)

n−1−i1
(i − 1, j)

+ aμ(t)
n−1(i, j + 1) 1 − 2λ(t)

0 (i, j + 1)􏼐 􏼑

− a 􏽘
n−2

i1�1
μ(t)

i1
(i, j + 1)μ(t)

n−1−i1
(i, j + 1)

+ aμ(t)
n−1(i, j − 1) 1 − 2λ(t)

0 (i, j − 1)􏼐 􏼑

−a 􏽘
n−2

i1�1
μ(t)

i1
(i, j − 1)μ(t)

n−1−i1
(i, j − 1)⎞⎠,

(14)
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where indices (i, j) denote the coordinates of the current
node (i � 1, 2, . . . , Nx, j � 1, 2, . . . , Ny); λ(0)

0 (i, j) is the
recurrent eigenvalue of the matrix of initial conditions at the
node (i, j); μ(0)

1 (i, j)≠ 0.

4. The Construction of the Multiple Image
Hiding Scheme Based on Hyper CML

Without loss of generality let us consider the logistic map of
nilpotent matrices of order 4 with the largest divergence
code 0 1 2 3􏼂 􏼃 (all four eigenvalues of the matrix of initial
conditions do coincide) [56]. Let us denote the repetitive
eigenvalue of the matrix of initial conditions as λ(0)

0 :

X(0)
� λ(0)

0 I + μ(0)
1 N1 + μ(0)

2 N2 + μ(0)
3 N3, (15)

where N1 � T

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T− 1, N2 � T

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T− 1, and

N3 � T

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T− 1; T is a nonsingular square matrix of

order 4; μ(0)
1 , μ(0)

2 , and μ(0)
3 are the auxiliary parameters not

equal to zero.

4.1. Te Logistic Map of Nilpotent Matrices of Order 4.
Te dynamics of the iterative logistic map of matrices of
order 4 splits into four scalar intertwined iterative maps (13):

λ(t+1)
0 � aλ(t)

0 1 − λ(t)
0􏼐 􏼑,

μ(t+1)
1 � aμ(t)

1 1 − 2λ(t)
0􏼐 􏼑,

μ(t+1)
2 � aμ(t)

2 1 − 2λ(t)
0􏼐 􏼑 − a μ(t)

1􏼐 􏼑
2
,

μ(t+1)
3 � aμ(t)

3 1 − 2λ(t)
0􏼐 􏼑 − 2aμ(t)

1 μ(t)
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Te necessary and sufcient conditions for the iterative
map of matrices of order n to diverge are [56]:

(i) Te packing code must be greater than zero (at least
two eigenvalues of the matrix of initial conditions
must coincide)

(ii) Te Lyapunov exponent of the scalar iterative map
must be greater than zero (the iterative map must
generate a chaotic process)

Te frst condition for (16) is satisfed automatically. Te
Lyapunov exponent for the scalar logistic map reads [64]:

L �
1
t

􏽘

t−1

s�0
ln a 1 − 2λ(s)

0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (17)

Let us observe that

ln μ(t+1)
1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � ln 􏽙

t

s�0
f
′ λ(s)

0􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎞⎠ � L(t + 1).⎛⎝ (18)

If the Lyapunov exponent L is greater than zero, then the
sequence |μ(t)

1 | will diverge. Te divergence rate of |μ(t)
1 | is

linear the growth of the elements of the sequence |μ(t)
1 | is

comparable (in average) to the growth rate of a geometric
progression (the common ratio of this progression is L).
Ten, the slope of the approximating line describing the
growth of ln|μ(t)

1 | is L.
Te growth rate of |μ(t)

2 | can be evaluated analogously.
Te term |aμ(t)

2 (1 − 2λ(t)
0 )| vanishes in respect of |a(μ(t)

1 )2| at
large t (note that μ(0)

2 ≠ 0). Ten,

lim
t⟶∞

ln μ(t)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ln(a) + 2 lim
t⟶∞

ln μ(t)
1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (19)

Terefore, the slope of a line approximating the average
growth of ln|μ(t)

2 | is 2L (at large t). Analogously,

lim
t⟶∞

ln μ(t)
3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ln(2a) + lim
t⟶∞

ln μ(t)
1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + lim
t⟶∞

ln μ(t)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(20)

Tus, the slope of a line approximating the average
growth of ln|μ(t)

3 | is 3L. Te divergence of the logistic map of
matrices of order 4 is illustrated in Figure 1. Te divergence
rate of auxiliary parameters μ(t)

1 , μ(t)
2 , and μ(t)

3 at a � 3.59 are
presented in Figure 2. It can be observed that formal
evaluation of the divergence rates of auxiliary parameters
μ(t)
1 , μ(t)

2 , and μ(t)
3 does correspond well to the results of

computational simulations.

4.2. Te Proposed Image Hiding Scheme in a Hyper CML.
Let us consider the coupling between auxiliary parameters
μ(t)
1 , μ(t)

2 , and μ(t)
3 as defned by equation (16). Tese re-

lationships are represented by the schematic diagram in
Figure 3. Te evolution of μ(t+1)

1 depends on μ(t)
1 but is af-

fected neither by μ(t)
2 nor by μ(t)

3 .
Analogously, the evolution of μ(t+1)

2 depends on μ(t)
1 and

μ(t)
2 –but is not afected by μ(t)

3 . Finally, the evolution of μ(t+1)
3

is afected by μ(t)
1 and μ(t)

2 , and by μ(t)
3 .

Such complex interconnections between auxiliary pa-
rameters enable the construction of the hiding scheme of
multiple images in one single hyper CML.

Initially, let us observe the efects caused by perturba-
tions in μ(0)

1 to the evolution of μ(t)
1 , μ(t)

2 , and μ(t)
3 (Figure 4).

At frst, initial conditions of μ(0)
1 (i, j), μ(0)

2 (i, j), and μ(0)
3 (i, j)

are set to 0 in the whole domain. Ten, the dot skeleton
representation of the secret image is embedded into the
hyper CML by perturbing initial conditions of μ(0)

1 (i, j) at
the nodes corresponding to the dot skeleton representation
of the secret image. Te parameters ε and a of the hyper
CML are set to 0.13 and 3.59 accordingly at all the nodes of
the domain. Patterns produced after 10, 20, 50, 100, 200, 300,
400, and 600 time-forward iterations are depicted in
Figure 4.

Te secret image is underdeveloped in the parameter
plane of μ(t)

1 (i, j) at t � 10, 20, 50 (Figure 4). However, the
pattern representing the secret image gets overdeveloped at
t> 200 (Figure 4).
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Figure 1:Te divergence of the logistic map of nilpotent matrices of order 4.Te recurrent eigenvalue of the matrix of initial conditions λ(0)
0

is set to 0.1. Te bifurcation diagram of the scalar logistic map λ(t+1)
0 � aλ(t)

0 (1 − λ(t)
0 ) is depicted in part (a); the Lyapunov exponent for this

map is represented in part (b) (values greater than zero are marked in red). Initial values of auxiliary parameters μ(0)
1 , μ(0)

2 , and μ(0)
3 are set to

1. Te evolution of auxiliary parameters μ(t)
1 , μ(t)

2 , and μ(t)
3 is shown in parts (c–e) accordingly. Absolute values of auxiliary parameters μ(t)

1 ,
μ(t)
2 , and μ(t)

3 greater than 100 are cut of at 100 for the clarity of visualization. Absolute values of auxiliary parameters μ(t)
1 , μ(t)

2 , and μ(t)
3

greater than 105 are marked in red.
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150

100

50

0
0 100 200 300 400 500

In | μ1
(t) |

In | μ2
(t) |

In | μ3
(t) |

Figure 2:Te rate of divergence the logistic map of nilpotent matrices of order 4.Te recurrent eigenvalue of the matrix of initial conditions
λ(0)
0 is set to 0.1; a is set to 3.59; initial values of auxiliary parameters μ(0)

1 , μ(0)
2 , and μ(0)

3 are set to 1. Te Lyapunov exponent L of the scalar
logistic map is 0.139 at a � 3.59.Te evolution of ln|μ(t)

1 |, ln|μ(t)
2 |, and ln|μ(t)

3 | is represented by the black line, the blue line, and the green line,
respectively. Te growth of ln|μ(t)

1 | is approximated by the black dashed line with the slope coefcient equal to 0.143 ≈ L. Te growth of
ln|μ(t)

2 | is approximated by the blue dashed line with the slope coefcient equal to 0.285 ≈ 2L. Te growth of ln|μ(t)
3 | is approximated by the

green dashed line with the slope coefcient equal to 0.431 ≈ 3L.
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It can be observed that the perturbations in the pa-
rameter plane of μ(0)

1 (i, j) are transmitted into the parameter
plane of μ(t)

2 (i, j) and the parameter plane of μ(t)
3 (i, j)

(Figure 4). Te random mean square error (RMSE) between
the inverse original secret image and the patterns produced
in parameter planes μ(t)

1 (i, j), μ(t)
2 (i, j), and μ(t)

3 (i, j) help to
determine the optimal time steps when the developed
patterns yield the best correspondence to the secret image
(Figure 5). Note that the optimal time moments are diferent
for all three parameter planes (Figure 5).

Further, let us investigate the efects caused by pertur-
bations in μ(0)

2 to the evolution of μ(t)
1 , μ(t)

2 , and μ(t)
3 (Fig-

ure 6).Te initial conditions of μ(0)
2 (i, j), and μ(0)

3 (i, j) are set
to 0 in the whole domain. Te dot skeleton representation of
the secret image is embedded into the hyper CML by per-
turbing initial conditions of μ(0)

2 (i, j) at the nodes corre-
sponding to the dot skeleton representation of the secret
image. Note that initial values of μ(0)

1 (i, j) are set to 0.0001 in
the whole domain.Te parameters ε and a of the hyper CML
are set to the same values as before. Patterns produced after

10, 20, 50, 100, 200, 300, 400, and 600 time-forward itera-
tions are depicted in Figure 6.

Te secret image is underdeveloped in the parameter
plane μ(t)

2 (i, j) at t< 10 (Figure 6). However, the pattern
representing the secret image gets noninterpretable at
t≥ 200 due to the divergence of μ(t)

2 (i, j) (Figure 6). Per-
turbations in the parameter plane μ(0)

2 (i, j) are transmitted
into the parameter plane μ(t)

3 (i, j) (Figure 6). Note that the
secret image is not transmitted back into the parameter
plane μ(t)

1 (i, j). Te RMSE values between the inverse of the
secret image and the patterns produced in parameter planes
μ(t)
2 (i, j) and μ(t)

3 (i, j) help to identify the optimal time steps
when the developed patterns yield the closest reconstruction
of the secret image (Figure 7).

Finally, let us present the multiple images hiding scheme
in the proposed hyper CML. At frst, initial conditions of
μ(0)
1 (i, j), μ(0)

2 (i, j), and μ(0)
3 (i, j) are set to 0 in the whole

domain.Ten, dot skeleton representations of three diferent
secret images (Coat of Arms, Radioactive, and At Sign) are
embedded into the hyper CML. Initial conditions of

μ1
(t)

μ1
(t+1) μ2

(t+1) μ3
(t+1)

μ2
(t) μ3

(t)

+ +

×

^2

Figure 3: Te schematic diagram of relationships between auxiliary parameters μ(t)
1 , μ(t)

2 , and μ(t)
3 according to (16).

0 10 20 50 100 200 300 400 600

μ1
(t)

μ2
(t)

μ3
(t)

t

Figure 4: Perturbations in the parameter plane μ(0)
1 (i, j) are transmitted into parameter planes μ(t)

2 (i, j) and μ(t)
3 (i, j) (ε � 0.13; a � 3.59).

Initial conditions of μ(0)
1 , μ(0)

2 , and μ(0)
3 are set to zero in the whole domain. Te dot skeleton representation of the secret image is embedded

into the hyper CML by setting initial conditions μ(0)
1 (i, j) � 1 at the nodes corresponding to the dot skeleton representation of the secret

image. Te produced patterns are depicted after 10, 20, 50, 100, 200, 300, 400, and 600 time-forward iterations.
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μ(0)
1 (i, j) are perturbed by the dot skeleton representation of

the Coat of Arms, initial conditions of μ(0)
2 (i, j) are per-

turbed by the dot skeleton representation of the Radioactive,

and initial conditions of μ(0)
3 (i, j) are perturbed by the dot

skeleton representation of the At Sign at nodes corre-
sponding to dot skeleton representations of the secret

22 38 88
0

0.2

0.4

0.6

0.8

RM
SE

μ1
(t)μ2

(t)μ3
(t)

t

Figure 5: Te RMSE between the original secret image and patterns produced in parameter planes |μ(t)
1 |, |μ(t)

2 |, and |μ(t)
3 | help to determine

the optimal time steps (t � 88, t � 38, and t � 22) when the developed patterns yield the best correspondence to the secret image.

0 10 20 50 100 200 300 400 600

μ1
(t)

μ2
(t)

μ3
(t)

t

Figure 6: Perturbations in the parameter plane μ(0)
2 (i, j) are transmitted into the parameter plane μ(t)

3 (i, j) but not in to the parameter plane
μ(t)
1 (i, j) (ε � 0.13; a(i, j) � 3.59). Initial conditions of μ(0)

1 are set to 0.0001; initial conditions of μ(0)
2 and μ(0)

3 are set to zero in the whole
domain.Te dot skeleton representation of the secret image is embedded into the hyper CML by setting initial conditions μ(0)

2 (i, j) � 1 at the
nodes corresponding to the dot skeleton representation of the secret image. Te produced patterns are depicted after 10, 20, 50, 100, 200,
300, 400, and 600 time-forward iterations.

68 72
0

0.2

0.4

0.6

0.8

1

RM
SE

t

μ2
(t)μ3

(t)

Figure 7: Te RMSE values between the original image and patterns produced in parameter planes |μ(t)
2 | and |μ(t)

3 | help to determine the
optimal time steps (t � 72 and t � 68) when the developed patterns yield the best correspondence to the secret image.
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images. Te parameters ε and a of the hyper CML are set to
0.13 and 3.59 accordingly at all the nodes of the domain.
Patterns produced after 10, 20, 50, 100, 200, 300, 400, and
600 time-forward iterations are depicted in Figure 8.

Te best representation of the Coat of Arms is achieved
at t � 271 in the parameter plane μ(t)

1 (Figure 9). Te best
representation of the secret image Radioactive is achieved at
t � 91 in the parameter plane μ(t)

2 (Figure 9). However, the
Radioactive pattern is soon contaminated afterwards by the
Coat of Arms (transmitted from the parameter plane μ(t)

1 )
(Figure 9). Te best representation of the At Sign is achieved
at t � 60 in the parameter plane μ(t)

3 (Figure 9). Te pattern
in μ(t)

3 is quickly contaminated afterwards by the in-
formation transmitted from the parameter planes μ(t)

1 and
μ(t)
2 (Figure 9).

4.3. Te Structured Diagram of the Communication Scheme
Based on a Hyper CML

4.3.1. Te Communication Scheme. Te structure of com-
munication scheme between Bob (the sender) and Alice (the
receiver) reads:

Step 1. Hiding multiple images into the initial conditions of
the hyper CLM.

Bob generates the initial conditions for the hyper CLM
and hides all diferent secret images into the matrix of initial
conditions.

(i) Defne the resolution of the image (the spatial
dimension or the number of the nodes in the hyper
CML): Nx × Ny.

(ii) Defne the nodal dimension of the hyper CML (the
size of the nodal matrix n × n; n≥ 2). Without loss
of generality all further instructions are limited to
n � 4 (the carrying capacity of the scheme is n −

1 � 3 secret images).

(iii) Set I �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; N1 �

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

N2 �

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; N3 �

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(iv) Defne the scalar iterative chaotic map. Te pre-
sented computational experiment in this paper
uses the logistic map.

(v) Set the hyper CML to the onset of chaos. Te
parameter of the scalar logistic map a is set to 3.59
in the computational experiment presented in
this paper.

(vi) Set the coupling parameter of the hyper CML to
such a value which guarantees the efect of the
fnite-time divergence in the spatial surrounding of

the perturbed nodes. Te parameter ε is set to 0.13
in the computational experiment presented in
this paper.

(vii) Generate three Nx × Ny dimensional sparse logical
matrices (masks) M1, M2, and M3-the dot skeleton
representations of secret image 1, secret image 2,
and secret image 3. Te elements of the masks are
zeros except the points corresponding to the dot
skeleton representations of the secret images.

(viii) Defne the magnitude of perturbation μ(0)
1 , μ(0)

2 ,
and μ(0)

3 for mask 1, mask 2, and mask 3. Te
presented computational experiment in this paper
assumes μ(0)

1 � 0.0001; μ(0)
2 � 1; μ(0)

3 � 10.
(ix) Defne the seed for random generator to produce

the Nx × Ny dimensional matrix of eigenvalues
0< λ0 < 1 and a random nonsingular four-
dimensional square matrix T.

(x) For each node (i, j) of the hyper CML, expand
each scalar node to a 4 × 4 nodal matrix Hi,j: Hi,j

� T(λ(0)
0 I + μ(0)

1 M1(i, j)N1 + μ(0)
2 M2(i, j)N2 + μ(0)

3
M3(i, j)N3)T

− 1.
(xi) Te resulting Nx × Ny dimensional matrixH does

represent the initial conditions of the hyper CML
(the cover image C).

(xii) Set the number of time-forward iterations t1, t2,
and t3 required to reveal secret image 1, secret
image 2, and secret image 3. Te presented com-
putational experiment in this paper assumes
t1 � 271, t2 � 91, and t3 � 60.

Step 2. Transmit the cover image C to the receiver. Transmit
the parameters of the hyper CML to the receiver.

Te cover image C can be considered as a public key.Te
eavesdroppers would need to know that the cover image
does represent the initial conditions of the hyper CML. Also,
the eavesdroppers would need to know the spatial dimension
of the hyper CML Nx × Ny, the nodal dimension of the
hyper CML n, and all the parameters of the hyper CML to be
able to decode the secret images.

Te parameters of the hyper CML (the spatial dimension
of the hyper CML, the nodal dimension of the hyper CML n,
the parameter of the chaotic iterative map a, the coupling
parameter ε, the number of time-forward iterations t1, t2, t3)
can be considered as private keys.

Step 3. Run the hyper CML and decode the secret images.
Alice can decode the secret images if and only if she is

running the hyper CML with preset parameters on the
matrix of initial conditions received from Bob. As soon as
the given number of time-forward iterations tk is reached,
Alice needs to decompose each nodal matrix of the hyper
CML to the combination of the diagonal matrix and the
combination of nilpotent. Te weighting coefcient (the
auxiliary parameter) of the k-th nilpotent μk will defne the
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brightness of the pixel of the k-th secret image (the co-
ordinates of the pixel do correspond to the indexes of the
current node of the hyper CML).

4.3.2. Te Dot Skeleton Representation of the Secret Images.
Each secret image must be transformed into its dot skeleton
representation before it is embedded into the hyper CML.

Te dot skeleton representation must satisfy the following
two opposite requirements [65]:

(i) Te points of the dot skeleton representation should
be as far from each other as possible.

(ii) Te points of the dot skeleton representation should
not be located too far from each other so that the

0 10 20 50 100 200 300 400 600 t

μ1
(t)

μ2
(t)

μ3
(t)

Figure 8: Te hiding scheme of tree diferent secret images into a single hyper CML (ε � 0.13; a � 3.59). Initial conditions of μ(0)
1 , μ(0)

2 , and
μ(0)
3 are set to zero in the whole domain. Initial conditions of μ(0)

1 are perturbed by setting μ(0)
1 (i, j) � 0.0001 at nodes corresponding to the

dot skeleton representation of the Coat of Arms. Initial conditions of μ(0)
2 are perturbed by setting μ(0)

2 (i, j) � 1 at nodes corresponding to
the dot skeleton representation of the Radioactive. Initial conditions of μ(0)

3 are perturbed by setting μ(0)
3 (i, j) � 10 at nodes corresponding to

the dot skeleton representation of the At Sign. Te produced patterns are depicted after 10, 20, 50, 100, 200, 300, 400, and 600 time-forward
iterations.

60 91 271
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Figure 9:Te hiding scheme of tree diferent secret images into a single hyper CML.TeCoat of Arms is revealed at t � 271 in the parameter
plane |μ(t)

1 |. Te Radioactive is revealed at t � 91 in the parameter plane |μ(t)
2 |. Te At Sign is revealed at t � 60 in the parameter plane |μ(t)

3 |.

0 10 20 50 100 200 300 400 600

μ1
(t)

t

Figure 10: Te dot skeleton representation of the Coat of Arms is embedded in the hyper CML with the nodal dimension of 2 (ε � 0.13;
a � 3.59). Te initial conditions of μ(0)

1 are set to zero in the whole domain; the perturbation magnitude at dot skeleton is set to 1. Te
produced patterns are depicted after 10, 20, 50, 100, 200, 300, 400, and 600 time-forward iterations (the best reconstruction of the secret
image is reached after 92 iterations).
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(a) (b)

Figure 11: Te secret information is lost only within the cropped part of the secret image. Part (a) represents the dot skeleton of the secret
image with a cropped square marked in red; part (b) shows the decoded secret image.

(a) (b)
Figure 12: Continued.
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(c) (d)

Figure 12: Te “salt and pepper” type noise added to the dot skeleton image partially and fully destroys the decoded secret. Dot skeletons
images with 1% and 25% of pixels afected with the noise are depicted in parts (a) and (c) accordingly. Te decoded images are shown in
panels (b) and (d).

(a) (b)
Figure 13: Continued.
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initial perturbations induced at those points would
be able to interact during the evolution of the model.

It is important to observe that the perturbation at the dot
skeleton point does not need to be large (it is below the noise
level in [65]). Also, the excitable media of the model should
guarantee that the initial perturbation in a single pixel does
generate the efect of fnite-time divergence in the sur-
rounding of that pixel [55]. And the interaction between
zones of fnite-time divergence is responsible for the gen-
eration of the secret image. Clearly, the construction of the
dot skeleton representation of the secret image is closely

related to the carrying capacity of the scheme and the pa-
rameters of the governing evolutionary model [55]. Te
construction strategy of the dot skeleton representation in
this paper is directly incorporated from [55].

4.4. Te Robustness of the Proposed Scheme against Partial
ImageDestruction Attacks. Without loss or generality, let us
consider a hyper CML with the nodal dimension equal to 2.
Also, a higher resolution of the proposed scheme is con-
sidered (Nx � Ny � 1000). Te evolution of the single
pattern (the Coat of Arms) is presented in Figure 10; the

(c) (d)

Figure 13:Te Gaussian white noise added to the initial dot skeleton partially or fully destroys the decoded image. Initial dot skeletons with
the added Gaussian noise (zero mean and the variance equal to 10− 5 and 10− 2) are depicted in parts (a) and (c). Te decoded images are
shown in panels (b) and (d) accordingly.

(a) (b)

Figure 14: Te secret information is encoded in linearly transformed secret image (part (a)). If the dot skeleton is multiplied by a constant
value, the secret image will be decoded correctly (part (b)).
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coupling parameter ε is set to 0.13; the parameter of the
logistic map a is set to 3.59. Te hyper CML is perturbed at
the nodes corresponding to the dot skeleton representation
of the secret image (the distance between two adjacent pixels
is set to 5). Te perturbation is executed by setting the initial
conditions of μ(0)

1 (i, j) to 1 at the nodes corresponding to the
dot skeleton representation of the Coat of Arms. Te initial
values of λ(0)

0 (i, j) are set as random numbers uniformly
distributed in the interval (0, 1). Patterns produced after 10,
20, 50, 100, 200, 300, 400, and 600 time-steps are depicted in
Figure 10. Te best reconstruction of the secret image is
reached after 92 iterations.

Te robustness against cropping attacks is an important
feature of any image hiding scheme. Te proposed scheme
can resist a partial destruction of the dot skeleton.Te area of
the cropped square (marked in red in Figure 11(a)) is 4% of
all 1000 × 1000 pixels in the dot skeleton representation of
the Coat of Arms. Te evolved pattern in the hyper CML is
shown in Figure 11(b) (all parameters remain the same as in
Figure 10).

Te resistance to noise attack by adding 1% of the ‘salt
and pepper’ type noise to the dot skeleton image
(Figure 12(a)) is depicted in Figure 12(b). It can be seen that
the corruption of 25% of pixels in the dot skeleton repre-
sentation (Figure 12(c)) results into a complete destruction
of the decoded image (Figure 12(d)).

Te resistance of the proposed scheme to the Gaussian
noise attack (zero mean and variance equal to 10− 5,
Figure 13(a)) is illustrated in Figure 13(b). Note that the
Gaussian noise with variance equal to 10− 2 (Figure 13(c))
completely prevents the interpretation of the decoded image
(Figure 13(d)).

Te linear transformation of the perturbated values of
the dot skeleton does not change the decoded image.Te dot
skeleton values multiplied by a constant 0.3 are depicted in
Figure 14(a). Te decoded image is presented in
Figure 14(b).

5. Concluding Remarks

Te image hiding scheme in the coupled map lattice of
nilpotent matrices is presented in this paper. Complex
nonsymmetric interactions between the auxiliary parame-
ters governing the evolution of the iterative scheme enable
hiding multiple secret images in a single two-dimensional
lattice.

All computational experiments are performed with the
proposed hyper CML. It is well known that the change in
precision can change the properties of numerically in-
vestigated chaotic systems [66]. All computations in this
paper are performed using standard double-precision
foating-point numbers in MATLAB. Te possible exten-
sion of the presented scheme to higher-dimensional ma-
trices (a hyper CML of n-dimensional matrices) is
completely straight-forward, and the carrying capacity of
such scheme is n − 1 diferent secret images. As noted
previously, a defnite advantage of the proposed scheme is
that the decoding of the secret does not require the com-
putation of any diferent images.

Tough this paper does present a novel scheme for
hiding multiple images, the main focus is on the new type of
CML.Te introduction of the hyper CML is one of the main
contributions of this paper. Tis is due to the properties of
the hyper CML that the proposed scheme is simply possible.

Te proposed image hiding scheme is implemented
using the scalar mapping function of the logistic map.
Higher-order derivatives of the logistic mapping function
vanish because it is a second-order polynomial. Te struc-
ture of coupled iterative maps represented by (14) becomes
simpler compared to the general case in (12). Also, all
perturbations at the nodes of the dot skeleton representation
of the secret images are performed in terms of the auxiliary
parameters. In other words, the parameter of the logistic
map remains fxed during the whole computational process
(a � 3.59). It is well-known that the logistic map has stability
islands in its region of chaotic behavior (Figure 1(a)).
However, since the parameter of the logistic map is fxed, the
existence of stability islands cannot be considered as
a weakness of the proposed information hiding scheme.

Te situation would become completely diferent if
a more complex scalar mapping function is used instead. For
example, higher order derivatives of themapping function of
the fractional logistic map [67], or the intertwined logistic
map [68] would not vanish. Ten, the governing equations
in (16) and relationships between auxiliary parameters
would be much more complex compared to the schematic
diagram depicted in Figure 3. Tat could open new possi-
bilities for designing more complex image hiding schemes
based on hyper CML. For example, the fractional logistic
map would eliminate the existence of degenerate initial
conditions which yield periodic orbits of the logistic map
[67], and the intertwined logistic map would eliminate the
nonuniformity of the distribution of the logistic map [68].
Such schemes do remain a defnite objective of future
research.
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