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Abstract

We introduce a short-term time series prediction model by means of evolu-
tionary algorithms and Bernstein polynomials. This adapts Bernstein-type
algebraic skeletons to extrapolate and predict short time series. A mixed
smoothing strategy is used to achieve the necessary balance between the
roughness of the algebraic prediction and the smoothness of the moving
average. Computational experiments with standardized real world time se-
ries illustrate the accuracy of this approach to short-term prediction.

Keywords: Bernstein polynomial, time series prediction, evolutionary
algorithms

1. Introduction

Forecasting is a modelling challenge that relies on a time series analysis.
Its aim is to identify a model in time-stamped data presumably generated
by some process. Extrapolating by means of this model it makes reliable
predictions for unseen data. Recent decades have delivered various models
and techniques that are suited to long-term or short-term time series fore-
casting [1]. Unfortunately, the sheer amount of data needed for training,
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validating and testing mostly renders long-term time series analysis implau-
sible. Yet, a one-step forward future horizon is adequate for short-term time
series forecasting [1] delivering methods which are widely used in high fre-
quency time series analysis with intra-daily data values [2]. Short-term time
series predictors are used in finance [3, 4, 5]; electricity demand and the asso-
ciated price forecasting problem [6, 7, 8]; wind power; passenger demand [9]
and many other applications.

Time series forecasting techniques can be coarsely grouped into classical
linear modelling, such as simple exponential smoothing [10], Holt-Winter’s
methods [11] or Autoregressive Integrated Moving Average (ARIMA) [12],
and modern non-linear modelling that is based on soft computing. The lat-
ter includes regime-switching models comprising a wide variety of threshold
autoregressive models [13, 14, 15]: self exciting models [15, 16, 17|, smooth
transition models [18] and continuous-time models [19, 20]. Hybrid forecas-
ting methods combine regression, data smoothing, and other techniques to
produce forecasts that make up for the comparative deficiencies of individual
methods.

A large number of linear and non-linear methods of forecasting appear
in the literature, with some methods claiming to do a better job than others
under competing assumptions, for example: when given only a short series of
input data, or if applied to long-term forecasting [1]. The literature [3]— [23]
covers a wide-variety of techniques that include various flavours of signal pro-
cessing, support vector machines, ARIMA Artificial Neural Network (ANN)
and Evolutionary Algorithms (EA).

The reader may wonder why there is a continued and strong interest in a
plethora of algorithms. The no-free-lunch theorems [24, 25] lead to the con-
clusion that a problem can always be found to defeat any algorithm. Indeed,
practical interest in the development of new and hybrid algorithms is warran-
ted because of this reality that no single method will outperform all others
in every single situation. At the same time, as Stafford Beer once obser-
ved [26], problems of practical interest cannot take an algorithm completely
by surprise because the regularities that they comprise are of this world.
Real-world problems have neither been designed nor contrived to defeat a
popular algorithm. A taxonomy of practical problems, therefore, exists, and
it motivates the search for improved algorithms that suit different classes of
problems.

In our earlier work [27, 28, 29], special EA schemes for the identification
of near-optimal algebraic skeleton sequences based on Prony interpolants
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(represented as linear recurrence sequences (LRS) in the discrete case) are
developed. The high variability of Prony interpolants is managed by means
of external [27], internal [28] and mixed smoothing strategies [29]. Such
Prony polynomial based techniques are shown to be well applicable for the
prediction of stationary short-term time series - but are not well suited for
such highly variable time series as Odonovan and Montgome [30].

A natural question arises as to whether some other algebraic interpolants,
covering a wider class of functions than the Prony polynomials, might be of
benefit to short-term time series forecasting applications. This paper aims to
investigate this question with Bernstein polynomials [31] and is structured as
follows. Preliminaries on forecasting techniques based on Prony polynomials
are given in the second section. Advances over research in [27, 28, 29] are
presented in the third section. Evolutionary algorithms for the identifica-
tion of a near-optimal set of corrections are developed in the fourth section,
the validation of the model is performed in the fifth section, computational
experiments with standard real world time series are presented in the sixth
section, and concluding remarks are given in the final section.

2. Preliminaries

The short overview of time series prediction based on Prony polynomi-
als [27, 28, 29] in this section, helps to introduce the method that uses Bern-
stein polynomials.

2.1. The order of a sequence

Let us consider an order n LRS with constant coefficients:

Ty = Ap_1Tp—1 + QnoTp—2 + ... + QoTp—n; k=0,1,..; (1)

where coefficients a;,j = 0,1,...,n — 1 are constants. The initial conditions
xp, k =0,1,...,n—1 uniquely determine the evolution of this LRS [32]. The
auxiliary polynomial to Eq. (1) reads

P (p) = pn - an—lpn_l - an—Qpn_Z - ... Qo, (2)

where p is the root of the characteristic equation. The LRS takes the form

Ty = pupl + peph+ .+ pp) (3)
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if all n roots of Eq. (2) p1, p2, ..., pn are distinct and coefficients are deter-
mined to fit the initial conditions of the recurrence. If some roots coincide,
then the recurrence takes the form:

r np—1 .
=2, (j)pﬁ;l (4)
k=1 1=0

where r is the number of distinct roots, ny is the multiplicity index of the
k-th root; ny +ng + ... +n, = n. If the order of LRS is not known in
advance, the algorithm for the reconstruction of the model of LRS from a
sequence (:cj);fg is more complex. The Hankel transform of (:cj);:g produces
the sequence (hj);;og where h; = det (H;) and Hj = (Tk1-2)1<4 1<(j11) 1S @
Hankel matrix — catalecticant matrix of dimension (54 1) x (j + 1). If there
exists an n > 1 such that h, # 0 but hy = 0 for all £ > n, then (xj)Jrog is an

Jj=
LRS and its order is n, and the auxiliary Eq. (2) now reads:

[ o ... xy ]
T Lo ... Tpit1l
det e =0. (5)
Tp1 Ty ... Top_1
|1 PPt

This linear system of algebraic equations has a unique solution because
h, # 0 [33]. How can one build a model of the process using Eq. (4) if
the observed sequence is not an algebraic equation? The idea behind the
algebraic prediction technique is based on the identification of the skeleton
algebraic sequences and is presented in [27]. Such a concept is based on the
assumption that many time series are contaminated with additive noise. This
is a strong reason why central to algebraic prediction models is the detection
of a base skeleton algebraic sequence in the time series data that removes
this additive noise. Further modifications are presented in [28, 29].

2.2. Algebraic prediction, external smoothing (APES)

APES is presented in [27]. Let 2n+1 observations be available for building
the model of the process: (xk)i’io; where x5, is the value of the observation
at the present time. The assumption made that the sequence consists of
the addition of noise to some algebraic progression means that the deter-
minant d,, # 0. The goal now becomes to identify a vector of corrections
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(€0,€1,--.,E2,) such that determinant d,, of differences to these corrections
is minimized:

To — €o 1 — &1 Tpn —En

7 T1— €1 Lo — &2 Tt Tntl T Entl

d, = det meh e (6)
Tp —En Tp41 —Epg1 - Ton — €2n

Corrections are identified before any predictions are made with the goal
of minimizing any distortions of the original time series and so the fitness
function which is the subject of the evolutionary pressure as applied by the
EA [27] is given by:

1
ald,| + Ziio Ak e
where the penalty constant, a, is chosen to reflect a desired balance between
the magnitude of the determinant and the sum of weighted corrections; Ay
define the tolerance corridor for corrections ;. The closer is the element to
the last time point, the higher is its weight — and the lower is the variability
of its correction.

The evolutionary computation strategy developed in [27] averages 100

reconstructed algebraic skeletons for every single prediction — a single step
prediction horizon — to discover a near-optimal vector of corrections.

(7)

Fe (50,51, PN ,E‘:Qn) =

2.3. Algebraic prediction, internal smoothing (APIS)

An alternative forecasting strategy for short time series in [28] assumes
that 2n observations are available: (xk)ii_ol; and xy,_1 is the value of the ob-
servation at the current time. Algebraic equation d,, = 0 uniquely determines
Zon, the element that follows in this sequence. However, such straightforward
computations cannot produce satisfactory forecasts. Thus, instead of trying
to build such a direct algebraic model into the future, a conciliation between
the variability of the skeleton algebraic sequences and the smoothness of the
averaged estimates is introduced:

1
ad e lew| + |Ton — Tanl’

(8)

E (5()’619 s ’6271—1) =

where I, is determined from
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To — €0 Tr1 —¢&1 Tt Tp —&En
det —0 (9)
Tn —Epn Tp+l —Ent+1 j‘Qn

and the quantity of interest, the smoothed moving average of (zy — 5k)i151,

we now denote as ZTo,. An evolutionary computation strategy is developed
in [28] which allows for the identification of a near-optimal vector of cor-
rections by averaging 100 reconstructed algebraic skeletons for every single
prediction (the prediction horizon is 1 step).

The principal differences between APIS and APES are in the extrapola-
tion schemes. The value of the determinant d,, is minimized, but not driven
down to zero in APES. APES cost function (Eq. (7)) is constructed in such
a way that both the total perturbation of the sequence and the absolute va-
lue of d, are minimized simultaneously. A large number of extrapolations
are performed for different perturbations (in the same observation window).
Then the predictions are averaged — hence the algorithm is given by name:
“external smoothing”.

On the contrast, Eq. (9) in APIS is exact. The only unknown in Eq. (9)
is To, — if only all corrections are pre-determined. The sequence is perturbed
and extrapolated in APIS. But the perturbation is constructed in such a way
that the extrapolation would be not far from the moving average — hence
the name “internal smoothing”. Note that measures related to the prediction
errors are not present in the cost functions neither in APES nor in APIS.

2.4. Algebraic prediction, mized smoothing (APMS)

An improved prediction strategy for short time series is proposed in [29].
Let 2n + 1 observations be available for building the model of the process:
(Ik)iio; where x,, is the value of the observation at the current time. The
fitness function for the set of corrections (sk)iio is given by:

1

Ziio lex| + aF +b | Tont1 — Tont1]

Fo (0,61, ... ,6,) = ;a,b>0;  (10)

where parameters a and b are penalty proportions between and balancing dif-

ferent terms in the denominator of the fitness function; £ = \/ T S (g — )’

is the error computed between observations (xk)iio and the reconstructed al-
gebraic skeleton. The algebraic prediction 9,1 can be considered to be the

6

Page 8 of 34



extrapolation of the algebraic skeleton: &; = S0 Sty (D) pi~*k. Tt is
important to note that the identification of a near-optimal vector of cor-
rections in APMS is obtained without any external averaging (the prediction
horizon is 1 step).

As mentioned previously, we now replace Prony polynomials by Bern-
stein polynomials. However, it seems that a straightforward replacement of
Prony interpolants by Bernstein interpolants is impossible. Why? All target
functions in [27, 28, 29] are based on determinants of catalectican Hankel
matrices constructed from the original time series. Such an approach is com-
pletely natural for Prony interpolants since Prony eigenvalues for a particular
algebraic skeleton are computed from the Hankel matrix of an appropriate
order. From the physical point of view, Prony polynomials describe a li-
near mixture of exponentially decaying (or growing) harmonics. Conversely,
Bernstein polynomials describe a much richer variety of functions; for exam-
ple, Prony polynomials cannot describe a sequence of factorials. However,
determinants of Hankel matrices are neither related to the order of Bernstein
polynomials nor to any parameters of Bernstein interpolants. Hence, a new
strategy is required for building the target functions for such a time series
forecasting approach.

3. Construction of a predictor based on Bernstein polynomials

The basis of Bernstein polynomials is developed mainly in the approxima-
tion theory of computer aided geometric design [34, 35]. Bernstein polyno-
mials are widely used in various fields of mathematics owing to their simple
probabilistic behavior, mostly in the development of nonparametric regres-
sion models [36, 37, 38, 39|, fuzzy logic based regression procedures [40],
the analysis of distribution and density functions [41, 42, 43], and various
approximation applications [44, 45]. Bernstein polynomials are used for ana-
lysis and forecasting of chaotic time series: the Bernstein Neural Network
(BNN) is used to forecast the chaotic wind power series [46]. An algorithm
based on the band-limited signal extrapolation by truncated Bernstein poly-
nomials is proposed in [47]. This scheme utilizes a finite number of equally
spaced samples of the given function and provides a time-limited polynomial
approximation. Another algorithm for local prediction of chaotic sequences
with variable frame length is presented in [48]. This interpolation method is
used to increase the available sample data, then the chaotic dynamical system
is modelled by using the least square algorithm based on the Bernstein po-

Page 9 of 34



lynomial. The optimal frame length and interpolation points are optimized
in every frame in order to improve the prediction performance [48].

This paper proposes a completely different approach based on the extra-
polation of the Bernstein scheme with mixed smoothing. The structure of
the proposed algorithm is discussed in detail in the following sections.

3.1. Straightforward extrapolation of the the Bernstein scheme

Polynomials are very useful tools because they are defined in simple terms;
can be calculated quickly on computer systems; and represent a huge variety
of functions [31]. Bernstein polynomials remain popular for practical com-
putations. For a given time series xg, x1, ..., x, the Bernstein polynomial of
degree n can be defined as:

B,(t) = zn: (Z) (1 — )Rk, (11)

k=0
where ¢ is time constructed on the uniform grid at nodes ty =0, t; = %, ty =
2 ..,t, = 1. The Bernstein interpolant can be extrapolated for the follo-

n’’

wing time as t,.1 = 1+ %:

A EOC Y o

Example 1. Assume the time series to be o = 2, x1 = 1.74, x5 = 1.5,

rs = 1.3 and x4 = 1.17. This time series is generated with polynomial
x(t) = 0.1 — 0.8t + 3 with ¢ = {0, %, %, 1, %} A Bernstein polynomial of

3-rd degree extrapolates using equation (12) to predict Z4:

HIOROISIORAIBIOR
CIORSE

The inaccuracy of this scheme is noticeable when comparing x4 to 4
values.
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3.2. The improved scheme

It is submitted that use of Bernstein polynomials of higher degree n +
1 yields a better behaved time series extrapolation. Let us assume that
B (0) = Zo, Bnj1 (%) = x1, Buy (%) = Ta,...,.Bh (1+%) = Tp41-
Variable x,, .1 can be expressed from the following equality:

n+1 n n+1 n
( 0 )(1—tn+1) +1t2+1$0+< 1 )(1—tn+1) tn+1$1+...

(13)
n+1 n n+1 0 in
+< n ) (1 - tn+l) tn-l—lxn + (n + 1) (1 - tn-i—l) tni%xn-ﬁ-l = Tn+1-
Denoting 2,11 = x,+1 to be the predicted value, this is obtained as:
n_ n 1— tn n+l1—k tﬁ T 1
s = k=0 (k) ( J;r)l +1 k;tn-i-l _14 1 (14)
1- tn+1 n

Example 2. Using the same time series as that of Example 1, the
improved extrapolation of Eq. (14) predicts Z, as:

() (-9 a0t () (-3 4+ () (=)'
L () (-}
=@

Example 2 demonstrates that the improved scheme outperforms a straig-
htforward extrapolation of the Bernstein scheme. However, the variability of
the predicted time series is still high. A natural resolution would be to use a
smoothing technique similar to the one presented in [29]. Yet the algebraic
predictor used in [29] is now replaced by the improved Bernstein predictor
scheme. Moreover, the target function used for the evolutionary optimization
in [29] needs to be completely re-designed.

3.3. Bernstein polynomial prediction with mized smoothing (BPPMS)

An evolutionary scheme is used in [29] to identify the algebraic skeleton
sequence in the observation window of the predicted time series by remo-
ving the unknown additive noise. The idea is based on the assumption that
the time series comprises some sort of deterministic skeleton describing the
dynamics of the time series which is contaminated by the additive noise.

9
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Figure 1: Schematic diagram illustrating the proposed method of prediction where thick
dots denote the original time series; stars denote the corrected time series; B,y; the
improved Bernstein forecasting for the original time series; B;, ; the improved Bernstein
forecasting for the corrected time series, and M A, 11 the moving average forecasting for
the corrected time series.

Let us denote T, = x — ep; k = 0,1,2,... as the corrected values of the
sequence (g are unknown corrections). The F-measure as in [49] becomes the
fitness measure of the GA that identifies predictive patterns in the sequence
of events [50].

The F-measure consists of two parts that embody different objectives:
PRECISION, the model precision, requires from the model that it faithfully
reconstruct the last known time series values and RECALL requires that the
prediction repeats past dynamical behavior:

(v +1)- PRECISION - RECALL
v2- PRECISION + RECALL

In equation (15) the value «y controls the relative importance of precision
to recall. If v = 0 then the fitness function evaluates only the PRECISION
part. If v = oo then the fitness function evaluates the RECALL values only.
In our case we build PRECISION and RECALL functions in such a way that
the minimal value of the fitness function is reached when the corrections are
small and the improved Bernstein extrapolation (through points ) is close
to the moving average prediction (also based on Zy):

F (e, €1,...,6n) = (15)

n—1

1 .
PRECISION = — 2_1: |2 — 24 (16)

10
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n
RECALL = lei| + |[MAni1 — By | ;00> 0; (17)

i=0
where an array g, €1, . . ., £, represents near-optimal corrections of the origi-
nal time series; the M A, ;1 notation stands for the moving average through
the last s time series values; B;, ; stands for the improved Bernstein extra-
polation through last n+ 1 values of Zj; parameter o determines the penalty
proportion between the sum of weighted corrections and the difference of
forecasts based on M A, and B ;. Note that we do not use weighting of
corrections (the closer is the element to present time — the higher its weight)
in Eq. (17) both not to add to the complexity of the algorithm and be-
cause such a weighting is more suitable to the moving average side of the
technique [51]. The synchronization of weightings between such corrections
and the MA is a topic of future research. Fig. 1 involves the aforementioned

concepts and offers clarity through diagram.

It is the same improved Bernstein construction of Eq. (14) that estimates
inner values of the time series Zo,Z1,. .., Z, in Eq (16), the PRECISION part:

n+1 n n+1 n n+1 n
( 0 )(1—tk> —Htgil?o—i—( 1 )(1—tk) tk$1++< )(1—tk) L Ln

n

1 k
+(n+ > (1 —t)" T Ty = o, by = ﬁ’k =0,1,,...,n.

n+1
(18)
Thus,
jk _ E?:() (njl) (1 . tk)n-l—l—i Z‘%Z + tZ—i_l:%n-i-l o (n;:l) (1 . tk)n-l—l—k tﬁjk
(1= (") A=t tf) ’
k

tk:_7k:077L T

(19)

Note that: Zy = Zg, T, = T,, and only for this reason are inner interpo-
lated values &g Z1,. .., &, included in Eq. (16). The overarching philosophy
of the proposed method is to determine a near-optimal skeleton sequence,
i.e., the identification of those corrections that are hypothesized to reflect

11
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Table 1: Comparison of fitness function components in different algebraic predictors.

| Fitness function component Model | APES | APIS | APMS | BPPMS |

Error norm - - + +

External smoothing + + - -
Internal smoothing - + + +
Determinant of Hankel matrices + - - -
Corrections (algebraic skeleton) + + + +

a perturbation to the underlying time series, and to extrapolate that se-
quence such that the predicted element resides near the MA forecast of the
non-perturbed sequence.

Table 1 gives differences between the fitness functions of APES [27],
APIS [28], APMS [29] and the BPPMS. Such fitness functions involve: a
smoothing method; the determinant of the Hankel matrix; an error norm,;
and the correction to the algebraic skeleton. Note that all fitness functions
exploit the latter since this correction is key to all of the aforementioned
models.

A model based on the Bernstein polynomials is more flexible as compared
to one based on Prony polynomials. We do not need to make an assumption
that the time series is a recurrence sequence contaminated by the additive
noise, we do not need to reconstruct neither the near-optimal order of the
sequence nor the roots of its polynomials. This flexibility allows to describe
a much wider class of interpolants, and to produce better forecasts.

3.4. Numerical example

The improved Bernstein prediction with mixed smoothing (BPPMS) is
illustrated by a simple numerical example. Let us keep with the same 4
observation values of the 3-rd degree polynomial: zy = 2, x; = 1.74, xy =

1.5, x5 = 1.3 and the extrapolated value x4 = 1.17 for t = {0,%,%,1,% .

Let us assume the following set of corrections: {g¢,e1,62,63} = {0.01, —0.01, —0.005, 0.01}.

The corrected observations (& = xp + ¢) read: To = 2.01, 7, = 1.73,
To = 1.495 and 73 = 1.31.

Let us fix the observation window for the moving average algorithm s = 2
that yields 7, = #23%2 = 1.40. Now, 24 can be extrapolated according to Eq.
(14):

12
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4
> X
3) T — 1.2429.

T4 =

Without loss of generality, v = 1. According to Eq. (16) and Eq. (17),
PRECISION = 0.2146 and RECALL = 0.0921. Now, the fitness function
(Eq. (15)) reads: F'(0.01,—0.01,—0.005,0.01) = 0.1289.

Note that this result is produced by a randomly chosen set of corrections.
Although deterministic strategies for optimization of €, may be used, full
sorting on a regular grid with a very coarse step in a domain ¢, = —0.01 :
0.001:0.01, £ =0, 1, 2, 3 would already result in 194481 sets of corrections!
Evolutionary optimization techniques are needed for identification of the near
optimal set of corrections.

The cost function (Eq. (14)) is defined in closed form and the para-
meters are continuous. It is differentiable almost everywhere in the multi-
dimensional space of corrections (except for modulus boundaries). Thus, a
plausible approach to the optimization of the cost function are gradient-based
techniques but the topology of the cost function of this primitive example
comprising the 4-dimensional space of corrections is already very complex
corrections are implicitly embedded into precision and recall in an intricate
form.

Deterministic optimization leads to the convergence towards a local ex-
trema not only on the boundary of the feasible set, but also on one of the
axis of the correction space (where one correction is large and all others tend
to zero). For example, the starting point {0.01, —0.01, —0.005, 0.01} results
in {0, —0.1, 0, 0} and the strategy for the selection of the starting point is
completely unclear so it appears sensible to exploit evolutionary algorithms
to identify near optimal set of corrections.

3.5. Time series forecasting algorithm

The proposed time series forecasting algorithm consists of three parts:
pre-processing, one step forward prediction and parameter re-estimation.

A. Pre-processing

The degree n of the Bernstein polynomial and the smoothing parameter s
must be identified prior to time series forecasting. Pre-processing involves

13
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Figure 2: Model preprocessing. Step 1: identify smoothing parameter s for moving average
(MA) forecasting; Step 2: identify Bernstein polynomial parameters n.

L time series observations. It consists of two steps: model development
and error testing. If K is a number of observations smaller than L, then
L — K observations develop the model while K observations compute the
Root Mean Square Error of prediction (RMSE). That is (see also Figure 2):

Step 1. Identification of smoothing parameter s for moving average (MA)
forecasting: the optimal observation window s = 1,2,...,(L — K) is
identified for MA forecasting (in terms of RMSE).

Step 2. Identification of the Bernstein polynomial degree n: a one-step for-
ward prediction algorithm evaluates model accuracy within the range
of the testing set. RMSE between the predicted Zj_gi1,...,27 and
observation values x;_x.y1,. .., is minimized in respect of n.

B. One-step forward prediction algorithm.

Given time series xg,21,%s,..., n and s.

1) Compute M A, for (xk)Z:i_S“.

(1)

(2) Use EA to find a near optimal set of corrections (gx)y_,-

(3) Reconstruct &,1 = BS ., using (¢),_,.

(4) Shift the observation window by 1 step forward and return to step (1).

C. Parameter re-estimation.

14
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It is clear that the preselected degree of the Bernstein polynomial n + 1
cannot remain fixed for long time series realizations; the model governing
the evolution of the time series must be updated adaptively. We introduce
the maximal level of the acceptable absolute error level of the prediction ¢
as a level-set measure to adapt the forecasting model to dynamical variation
of the time series. The degree of the Bernstein polynomial must be changed
when absolute errors of the prediction exceed §. This adaptive selection of
the degree of the polynomial reads:

1

(1)

(2) Execute One-Step forward prediction algorithm and compute Z ;.

(3) Compute the absolute error E = |zy — &)

(4) If E < § move the forecasting window one step ahead and repeat steps
(2) and (3). If E > 0 terminate forecasting and run the pre-processing
with time series values {xy_ 1,20 —+1,20 - Fix new value n and pro-
ceed with steps (2) and (3) for time series further values z /11,2742, - -

Such adaptive time series forecasting can significantly improve forecasting
results.

4. Evolutionary algorithms for the identification of a near-optimal
set of corrections

4.1. Training and validation of the BPPMS model with DJIA time series

The task of finding a near-optimal set of corrections is well suited to
GA. The GA functional and operational parameters are identical to those
n [29], namely, the crossover coefficient £ = 0.7, the mutation parameter
= 0.1 and the arithmetic crossover parameter § = 0.2 (Figure 3). Each
GA experiment runs 40 generations. The initial population comprises 50
chromosomes randomly generated; values of parameters of genes are limited
to the interval [—0.2;0.2].

Fitness function Eq. (15)-(17) has two parameters (« and ) predefined
for each computational experiment. Training executes 100 parallel indepen-
dent runs for each set of parameters a and « over grid o = {0.1,0.2,...,1},
~v ={0.1,0.2,...,1,1.5,2,3,4,5,10,20} and n = 5,10,15 and 20 and computes
mean of the RMSE of each parallel independent run.

15
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Figure 3: Schematic diagram of the arithmetic crossover procedure (every gene represents
a single correction).

All computations use Dow Jones Industrial Average (DJIA) time series
(2000-01-01 to 2013-08-27 monthly index observations on of 11 US stocks) [52]
normed into the range [—1; 1], pre-processed for {zg,...,z30}. The model
builds on the initial 21 observations, the RMSE computed for the last 10
observations.

The lowest RMSE value isat n+1 =11, s = 1, « = 0.2 and v = 2.
We fix a and v — but the Bernstein polynomial degree n + 1 and the smoo-
thing window s chosen for each individual time series. The set of corrections
discovered by the GA builds the time series predict candidate.

Examination of the prediction residuals in the training set delivers the
required verification of the model accuracy. Residuals must not differ signi-
ficantly from pure random errors with zero mean [12]. The auto-correlation
function (ACF) and the partial auto-correlation function (PACF) are both
zero at all lags for the white noise. In practice, it means that all the ACF and
PACEF values of residuals should be within the confidence bounds. It is also
important to check if residuals are normally distributed and uncorrelated.
Several diagnostic statistics of the residuals examine the goodness of fit to
the model of the historical data. For instance, the Jarque-Bera test [53] is
a test of null hypothesis that residuals should have normal distribution and
the skewness and kurtosis both equal to zero. We test the randomness of
the residuals for the BPPMS model on prediction errors produced during the
pre-processing. The residuals of the ACF and the PACF do not show any
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Figure 4: The ACF and PACF plots of residuals of the BPPMS forecasting model for the
training set forecasts of the Dow Jones industrial Average time series. The results show
that the selected BPPMS model is adequate: the ACF and the PACF values of residuals
are within the confidence bounds — the residuals are uncorrelated and can be considered
as white noise.

significantly correlated coefficients (Fig. 4). The Jarque-Bera test indicates
that the hypothesis that the residuals are normally distributed is not rejected.
These results enable us to consider that the selected model is adequate.

5. Model validation based on DJIA time series

The previous section discussed optimal parameter choice. The smallest
RMSE values are obtained with n = 10, but is using the same degree of Bern-
stein polynomial most accurate in all considered time series? For example,
Fig. 5 (A) demonstrates poor forecasting results in the segment [89; 140]. In
this section a strategy of adaptive selection of parameter n predicts different
parts of time series. This is based on the idea of algebraic segmentation of
short non-stationary time series [54]. The error level § is the key parameter
preselected. Error level ¢ (preselected in training) and training set values
To1,Ta2,. . . , X3 are shown in Fig. 5 (A). It follows that an adaptive selection
of ¢ (as detailed in [54]) can improve upon the forecasting with n = 10 in
segment [89; 140].
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Figure 5: The Dow Jones Industrial Average (DJIA) time series (solid line) and BPPMS
forecasts (dashed line) (A); Bernstein polynomial forecasting absolute errors, when poly-
nomial degree is fixed and equal to 11 (n 4+ 1 = 11) (B); Bernstein polynomial forecas-

ting absolute errors with adaptive polynomial degree (ABPPMS) for tolerance error level
d =0.07 (C).

Figure 5 (B) gives results on DJIA time series with adaptive polynomial
degree selection. The polynomial degree n 4 1 is recalculated and the set
of preceding values is retrained when the forecast error reaches the § value.
Fig. 5 (B) demonstrates that the forecast errors (at n = 10) are lower than
the 6 = 0.07 until zgg. As noted previously, we re-train the model at xgg.
We reset all Bernstein values n = 23,...,20 and repeat forecasting for 100
times; the predicted value gy is taken to be the average value of all 100
trials. The n value is set to 3 (the degree of Bernstein polynomial is equal to
n+ 1 =4). The process is repeated again. As we can see in Fig. 5 (C) — to
obtain satisfactory results the polynomial degree has changed 8 times, where
forecasting errors were higher than 0 = 0.07: at points 89, 95, 97, 102, 106,
112, 116, 140. Respectively, the degree of Bernstein polynomial at relevant
segments has changed to values: n+ 1 = 11 at segment [31, 89], n+1 =4
at [90,95], n+1 =6 at [96,97], n+ 1 = 6 at [98, 102], n+ 1 = 4 at [103,106],
n+1=17at [107, 112], n+1 =20 at [113, 116], n+1 = 12 at [117, 140}, and
n+ 1 = 8 at [141, 164]. The applied strategy improved upon the forecasts
and the RMSE value was reduced from RMSE = 0.0472 with n = 10 to
RMSE = 0.0417.
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Table 2: The comparison of RMSE errors for DJIA time series.
| [ MA(1) | SBS(0.99) | ARIMA(L,1,0) | APES | APIS | APMS | BPPMS | ABPPMS | NARNN |

[RMSE [ 0.0450 | 0.0451 | 0.0536 [ 0.2696 | 0.0500 | 0.0446 | 0.0472 | 0.0417 | 0.0480 |
[ MAE [ 0.0321 | 0.0322 | 0.0400 | 0.1189 | 0.0405 | 0.0321 | 0.0293 | 0.0280 | 0.0340 |

5.1. Comparison to other forecasting methods

We continue experiments with DJTA time series. We compare the perfor-
mance of ABPPMS (Adaptive Bernstein polynomial prediction mixed smoo-
thing) model with MA (s = 1), SES (o = 0.99), ARIMA(0,1,1), APES
(n=3), APIS (n =3, s = 3), and APMS (n =4, s = 1) models forecasting
results. All these models were analysed in [29] and the sets of parameters
with lowest RMSE values were preselected on the same training set of time
series data values and the forecast is executed from value No 31. Additionally
MAE (mean absolute errors) metrics were computed for accuracy analysis.
All computational results and best performances of the methods are presen-
ted in Table 2. Note that BPPMS prediction errors do not outperform MA
(with window s = 1), SES (a = 0.99) and APMS (n = 4, s = 1) models.
However, the adaptive polynomial selection methodology (ABPPMS) based
on error level ¢ outperforms all these methods. That can be explained by the
fact that ABPPMS finds a near-optimal conciliations between the variability
of polynomial algebraic extrapolation and the smoothness of the averaging
window. On the other hand, one needs to remember that although the se-
arch for a best time series forecasting method continues, it is agreeable that
no single method will outperform all others in all situations. Computational
experiments with other time series are presented in further sections.

The performance of ABPPMS is also compared to nonlinear autoregres-
sive neural network (NAR-NN) [55, 56]. Initially, the optimal architecture of
NAR-NN model for DJIA series was determined (4 delays and 7 neurons in
the hidden layer) — the criterion for the optimal architecture was the lowest
prediction error in the training set. Bayesian regularization training techni-
que [57] was used for training NAR-NN. The training of the network was
performed using 90 initial data points of DJIA series (the network was not
able to capture the dynamics of the time series from a smaller amount of data
points) — 70 % of these points were used for training, 15 % — for validation,
and 15 % — for testing (the last 132 — 90 = 42 data points were not used in
the training). One-step ahead DJIA series forecasting with NAR-NN (using
all available data points) resulted into RMSE = 0.0480 and M AE = 0.0340.
It appears that ABPPMS outperforms NAR-NN for DJIA series.
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Table 3: The assessment of the computational complexity of BPPMS.

[ The degree of Bernstein polynomial, n | 1 [ 2 [ 3 [ 4 ] 5 [ 6 [ 10 ] 15 [ 20

Time, sec [ 2.66 | 7.06 | 19.36 | 51.16 | 104.28 | 129.23 | 268.94 | 521.43 | 847.37 |

5.2. Computational complezity of BPPMS

ABPPMS is a one step forward prediction method. The model must be
updated for every time-step — thus the computational complexity of BPPMS
is an important feature to be considered. Moreover, it is important to de-
termine the computational complexity of a problem when GAs are being
used [58]. The performance of GAs is usually measured by the number of
fitness function evaluations done during the course of a run. For fixed po-
pulation sizes (the usual case in GA implementations) the number of fitness
function evaluations is given by the product of the population size and the
number of generations [59].

The computational complexity of BPPMS is assessed by measuring the
execution times for one step ahead prediction of DJIA series on an Intel (R)
Core TM i5 CPU 2.67 GHz personal computer. An arbitrarily generated
population of 50 chromosomes is fixed for all experiments. The crossover
coefficient k is set to 0.7; the mutation parameter 1 — to 0.1; the arithmetic
crossover coefficient § — to 0.2. Each GA experiment is executed for 40
generations. The Bernstein polynomial degree is incrementally changed from
1 to 20 for every consecutive experiment. The execution times are presented
in Table 3.

Computational experiments demonstrate a polynomial (not exponential)
relationship between the degree of Bernstein polynomial and the execution
time (Fig. 6). Least square approximation yields a parabola with a rather
small quadratic coefficient (Fig. 6). That is a rather favorable result in
respect to the efficiency of computational implementations of BPPMS.

6. Computational experiments with other time series

6.1. SEP 500 times series forecasting

The S&P 500 is the stock market index of 500 leading US shares. It covers
75 % of US equities with common stock listed on the NYSE or NASDAQ.
The time series considered spans the daily index for the period 2013-01-02
to 2013-06-18. The initial training process uses the first 20 values of this
time series, with the next 10 values of the time series reserved for model
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Figure 6: The assessment of the computational complexity of BPPMS.

Table 4: The comparison of RMSE errors for S&P 500 time series.
| [ MA(1) | SES(0.9) | ARIMA(0,1,1) | APES | APIS | APMS | BPPMS | ABPPMS | NAR-NN |

[ RMSE [ 0.0477 | 0.0476 ] 0.0484 [ 0.2266 | 0.1671 | 0.0445 | 0.0487 | 0.0414 | 0.0471 ]
[ MAE | 0.0448 | 0.0445 | 0.0440 [ 01697 | 0.1720 | 0.0414 | 0.0313 | 0.0302 | 0.357 |

validation. A Bernstein polynomial degree of n + 1 = 5 (parameter n = 4)
with s=1 attains lowest RMSE. BPPMS forecasts are shown in Fig. 7 (A)
(S&P 500 time series values — solid line, BPPMS forecasts — dashed line) with
RMSE value equal to 0.0487. Forecasting results with segmentation based
on different Bernstein polynomial degree selection reduce the RMSE value
to 0.0414. The selected absolute error level 6 = 0.095 is exceeded 6 times
and for this reason six different training processes are executed to obtain the
result, they are: n = 15 at segment [38,71]; n = 6 at [72,104]; n = 12 at
[105,117]; n = 14 at [118,129], n = 14 at [130,165], and n = 6 at [165,168].
The ABPPMS forecasting results of different degree Bernstein polynomials
and appropriate segments are illustrated in Fig. 7 (B) and (C).

A comparison to other methods of prediction of RMSE shows that BPPMS
outperforms only some of the algebraic methods. As an example, it outper-
forms APES (n = 3) and APIS (n = 3, s = 3), but concede to MA(1),
SES(a = 0.9), ARIMA(0,1,1), APMS(n = 3, s = 1). BPPMS also out-
performs NAR-NN (3 delays, 9 neurons in the hidden layer, first 120 data
points from 168 used for training). But it is obvious that ABPPMS obtains
the lowest RMSE value (Table 3).
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Figure 7: S&P 500 time series (solid line) and BPPMS forecasts (dashed line) (A); Bern-
stein polynomial forecasting absolute errors when polynomial degree is fixed and equal to
5 (n = 4) (B); Bernstein polynomial forecasting absolute errors with adaptive polynomial
degree (ABPPMS) for tolerance error level § = 0.095 (C).

6.2. STLFSI times series forecasting

The STLFSI (St. Louis Fed Financial Stress Index) measures the degree
of financial stress in the markets. This economic indicator is built from 18
weekly data series that capture some aspects of financial stress and respecti-
vely react to it. The time series used spans the index from 1993-12-31 to
2007-12-30.

The STLFSI time series training set yields the lowest RMSE value for a
Bernstein polynomial of degree n + 1 = 8 with the MA part s = 1. To a
tolerance level of 0 = 0.035 these segments are identified as: n = 7 at [31
56], n = 11 at [57 76], n = 10 at [77 84], n = 10 at [85 89], n = 3 at [90 93],
n =6 at [94 103], n = 14 at [104 164], and n = 15 at [165 167] (Fig. 8).

Comparison with other methods forecasting RMSE reveals that ABPPMS
produces the best results with RMSE = 0.0228, although; MA(1), SES(0.99)
and APMS methods yield better results than BPPMS (see Table 5). NAR-
NN (4 delays, 8 neurons in the hidden layer, 190 data points from 236 used for
training) outperforms BPPMS but does not outperform ABPPMS (Table 5).

6.3. Odonovan times series forecasting

The Odonovanl.dat time series reports on 70 consecutive yields of batch
chemical processes [30]; all 70 are normalized to interval [0; 1]. The initial
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Figure 8: STLFSI time series (solid line) and BPPMS forecasts (dashed line) (A); Bernstein
polynomial forecasting absolute errors, when polynomial degree is fixed and equal to 8
(n = 7) (B); Bernstein polynomial forecasting absolute errors with adaptive polynomial
degree (ABPPMS) for tolerance error level § = 0.035 (C).

Table 5: The comparison of RMSE errors for STLFSI time series.

[ [ MA(1) | SES(0.99) | ARIMA(0,1,1) | APES | APIS | APMS | BPPMS | ABPPMS | NAR-NN |

[RMSE [ 0.0268 | 0.0268 | 0.0311 [ 0.5098 | 0.0324 | 0.0276 | 0.0282 | 0.0228 | 0.0282 |
[ MAE [ 0.0207 | 0.0208 | 0.0251 | 02226 | 0.0248 | 0.0218 | 0.0225 | 0.01385 | 0.0186 |
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Figure 9: Odonovan time series (solid line) and BPPMS forecasts (dashed line) (A); Bern-
stein polynomial forecasting absolute errors, when polynomial degree is fixed and equal to
6 (n =5) (B); Bernstein polynomial forecasting absolute errors with adaptive polynomial
degree (ABPPMS) for tolerance error level § = 0.41 (C).

Table 6: The comparison of RMSE errors for Odonovan time series.
| [ MA(2) | SES(0.1) | ARIMA(1,0,0) | APES | APIS | APMS | BPPMS | ABPDMS | NAR-NN |
[ RMSE [ 0.1869 | 0.1758 | 0.1819 [ 0.7668 | 0.1728 | 0.1855 | 0.3397 | 0.2464 | 0.1582 |
[ MAE | 0.3695 | 0.3272 | 0.3266 | 1.0516 | 0.3326 | 0.3587 | 0.1759 | 0.1687 | 0.1214 |

training process delivers the lowest RMSE value. This equals 0.3397 for a
Bernstein polynomial of degree n + 1 = 6 and MA parameter set to s = 4.
The segmentation procedure uses an error level of § = 0.41. This yields 6
different segments: n = 5 at [31,32], n = 3 at [33, 35] , n = 4 at [36,49],
n = 5 at [50,61], n = 4 at [62,66], and n = 2 at [67,70]. This procedure
reduced RMSE error to value 0.2464 (Fig. 9). However, NAR-NN (2 delays,
4 neurons in the hidden layer, 50 data points from 100 used for training)
outperforms both BPPMS and ABPPMS (Table 6).

Given that BPPMS and ABPPMS are only superior to the APES method,
the proposed predictor appears not best suited at forecasting the Odonovan
time series.

6.4. Montgome times series forecasting.

The MontgomeS8.dat time series consists of 100 positive elements norma-
lized to the unit interval [0; 1]. Over the training set, the smallest RMSE
are obtained with BPPMS parameters set to n = 4 and s = 4. In forecas-
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Figure 10: Montgome time series (solid line) and BPPMS forecasts (dashed line) (A);
Bernstein polynomial forecasting absolute errors, when polynomial degree is fixed and
equal to 5 (n = 4) (B); Bernstein polynomial forecasting absolute errors with adaptive
polynomial degree (ABPPMS) for tolerance error level § = 0.3 (C).

Table 7: The comparison of RMSE errors for Montgome time series.
[ [ MA(2) | SES(0.1) | ARIMA(1,0,0) | APES | APIS | APMS | BPPMS | ABPPMS | NAR-NN |
[[RMSE [ 0.2152 | 0.2094 | 0.2106 [ 0.6589 | 0.2129 | 0.3407 | 0.1899 | 0.1842 | 0.1752 |
[ MAE | 02510 | 02515 | 02545 | 0.6054 | 0.2529 | 0.3377 | 0.1234 | 0.1215 | 0.1398 |

ting, RMSE = 0.1899 for BPPMS. For ABPPMS, and RMSE = 0.1842
with segments: n =4 at [31,33], n =9 at [34,47], n =5 at [48,49], n = 2 at
[50,54], n = 4 at [55,74], n = 15 at [75,88], n = 14 at [89,93], n = 4 at [94,95],
n =10 at [96,97], and n = 8 at [98,100] with error level § = 0.3 (Fig. 10).

It can be noted that both BPPMS and ABPPMS methods outperform
all other methods (including NAR-NN with 2 delays, 4 neurons in the hid-
den layer, 50 data points from 100 for training) in respect of MAE values
(Table 7).

7. Concluding remarks

A different approach to algebraic prediction based on Bernstein polyno-
mials with mixed smoothing procedure (BPPMS) is proposed in this paper.
Extrapolations of Bernstein-type skeletons are successfully employed to fo-
recast real world time series. Evolutionary algorithms are used to identify
a near optimal algebraic skeleton and to conciliate its variability with the
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smoothness on moving averaging. Moreover, models of Bernstein-type skele-
tons are selected using a fully automatic and adaptive procedure. The current
degree of Bernstein polynomial is changed if the measure representing the
error of prediction exceeds a preset level. Computational experiments with
real world time series indicate that such an approach can significantly im-
prove forecasting for many examples of non-stationary time series. Moreover,
the ability to generate a large number of near-optimal algebraic skeleton se-
quences from a very limited amount of data available in a fixed observation
window allows to apply BPPMS for very short time-series.

The degree n of the Bernstein polynomial and the smoothing parameter
s are identified for every individual time series. However, parameters « (the
balance between the corrections and the smoothness of the prediction) and ~y
(the relative importance of precision to recall) are fixed only for DJIA series
and used for all other time series in our paper. In fact, the forecasting results
for other time series could be improved if only parameters a and v would be
preselected individually for every time series (what would require thorough
computations in the preprocessing stage).

It appears that time series prediction techniques based on adaptive iden-
tification of Bernstein-type algebraic skeletons can improve forecasting re-
sults produced by Prony polynomials. This result is not astonishing as the
algebraic variability generated by Bernstein polynomials is much wider com-
pared to Prony polynomials. However, the ability of an adaptive selection
of the Bernstein-type model can serve as an effective computational tool for
time series segmentation applications - what is a definite objective of future
research.

Finally, it can be noted that the presented approach (based on the con-
struction of near-optimal perturbations) in principle could be adapted for a
completely different time series analysis problem — filtering out the additive
noise from the underlying unknown skeleton sequence. But the development
of such a filter is a completely different problem, and it also remains a definite
objective of future research.
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