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Abstract

A set of symmetric equidistant quadrature rules with equal internal weights are developed. Some of the rules use the first
(and second) derivative(s) in addition to the function values of the integrand. A single unifying concept based on finite element
techniques is used to develop this set of quadrature rules. With focus on the quadratures rules’ degree of precision we compute the
quadrature weights and error estimates for all rules given.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

A definite integral I (f) := fah f(t)dt can be approximated by an integration rule R(f) =) i, w; f (t;) where f;
are the nodes and w; are the weights of the n-point integration rule R. Automatic algorithms are widely used for the
numerical approximation of definite integrals. A survey of automatic integration routines is available in [4-8,10,11,
16,17].

In many engineering applications quadrature routines of high degree of precision must be used in real-time mode.
Unfortunately, compound Newton—Cotes quadrature formulas [6] require that the number of intervals must be a com-
posite numeral. It means that a significant number of nodes at the end of an experimental data series must be deleted
and the integration interval artificially shortened, especially if the number of nodes is not known at the beginning of
the experiment. Of course one could combine the compound rules with a fractional rule at the end of the experimental
data series. Thus all data-points and the pre-defined degree of precision would be kept, but the overall symmetry would
be lost. The object of this paper is to develop such quadrature formulas which would keep the overall symmetry and
be applicable in real time applications. One of examples of such formulas is presented in [15].

However, not only discrete nodal values of the integrated function are available in certain occasions. A typical
example is an integrator of second-order ordinary differential equations, when data on solutions’ magnitude, its first
and second derivatives are available at every time node. It is clear that evaluation of these derivatives would increase
the accuracy of a definite integral of the solution calculated in the time domain. Such quadrature routines involving
Hermite nodal conditions are available in [6].
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Naturally, there exists a definite need for integration rules not only capable of coping with the nodal Hermite
conditions, but also being insensitive to the number of intervals. Such class of quadrature routines can be named as
the generalisation of the compound trapezoidal rule. Such nomination has a definite sense. The compound trapezoidal
rule integrates polynomials of the first degree exactly; the internal weights are equal to one; there are no requirements
for the number of nodes except that it must be greater or equal to 2.

In this paper we generalise the trapezoidal rule in the sense of the degree of exactly integrated polynomial and the
number of nodal derivatives. The classical trapezoidal rule evaluates only the discrete values of the integrated function.
We propose a quadrature routine, which degree of precision and the number of nodal derivatives can be selected freely
while the weights of internal nodes are equal. It can be noted that the time steps in the domain of integration are fixed
and equal, so partition adaptability is impossible.

2. Illustrative example

Let us denote the values of a function f and its derivatives at time moments fo+ (i — 1) - h,i =1,...,8 as:
fi=flo+G—1-h); fi=f(to+G—1-h); f'=f"(to+G—1-h), (1)
where 4 is a time step and superscripts denote the first and the second derivatives.

One-dimensional finite elements consisting from 3 nodes will be used for approximation of the function in the
domain of integration. The co-ordinate of the first node of the first finite element E; is 7, the co-ordinates of the
second and the third nodes are #y + & and ty + 2h. The second finite element E is shifted by interval % in respect of
the first finite element. Thus the co-ordinates of the first, the second and the third nodes of E» are fg + h, ty + 2h and
to + 3h. The co-ordinates of the nodes of the last (the sixth) finite element are 7o + 5k, fo + 6k and 19 + 7h (Fig. 1).

Let us introduce local co-ordinate ¢ for every finite element. The co-ordinates of the first, the second and the third
nodes are assumed to be —1, 0 and 1 in the local co-ordinate system. Then, the shape functions of a finite element
are constructed as eighth degree polynomials satisfying Hermite conditions of interpolation. In general all nine shape
functions and their first and second derivatives are zero in —1, 0, 1 with the following nine exceptions (one exception
per shape function):

Ni(=1) = N2(0) = N3(1) = Ny(=1) = N5(0) = Ng(1) = N7 (=1) = Ng'(0) = Ng'(1) = 1, 2
where superscripts denote derivatives by ¢. Co-ordinate ¢ and local co-ordinate ¢ are related as:
t=to+k+¢)-h, k=1,...,6. 3)
Thus,
F &) = frvi-1: Fl@=h- fiyi fr@y=h*fl o i=1...3 “)
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Fig. 1. Direct stiffness procedure at m =3, n = 8.
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A continuous function can be interpolated in the domain of a finite element through the nodal values of that function
(fk, f{ and f atnode 1; fiy1, fi,; and f, | atnode 2; fit2, fi,, and f;’ , at node 3):
F@ = fi- Ni@ =+ fir1 - N2(©) + fier2 - N3(©)
+ (fi - Na@©) + figr - Ns(@©) + fian - No(©)) -
+ (i N1@©) + fler - Ns@) + filia - No(©)) - 2. (5)

It is clear that the interpolated function f (¢) is a polynomial of the eighth degree.
We calculate the integral in the global domain #y < f < f9 + 7/ in the following way (Fig. 1):

to+7h fo+5 3n fo+5 Sh l0+ Ly to+7h
/ f@®)dt = f f@®dt+ / fode+---+ / fdt+ f f@®dz. (6)
1 fo+5 3n fo+5 2h l‘o+%h

Eq. (3) and the assumption that the function f is a polynomial of the eighth degree leads to the following expression
of the first integral on the right side of Eq. (6):

fh+3 3n
/ feydr = / F@)de =h Z(ﬁ / Ni(©)dt + b / Nasi(©)dg + 12 f; f Net (c)d;) ™
Analogously, the second integral on the right side of Eq. (6) takes the form:
fo+3h 0.5
| roar=n [ s
to+3h =05
3
— Z(m / Ni(©)d + hf, / Naypi(©)de + 2l / Neti (c)dc) ®)
= -0.5 -0.5 -0.5
Similar procedure can be continued with all middle integrals until the last one (t =#y + (6 4 ¢{)h):
to+7h
/ Fydi= / @) de
t0+3n 0.5
1
=h Z<ﬁ+5 / Ni(§)d¢ +hf s / N3yi(£)dg +h? f/ s f N6+,-(¢>dc>. ©)
=1 —0.5 —0.5 —0.5

The definite integrals of the shape functions in Eqs. (7)—(9) can be calculated explicitly:

468627 72567
/N‘@) = 1146880" /N“(C) = 1146880" /NM) ¢= 1146880

19359 1377
/Nz@)d; - /Ns(c)dc e /Ng@)d; = s

0.5 0.5 0.5

12717 1377 81
/N3(§)d§=1146880; fN(’(;)dCZ_ll%gso; /N9(§)d§:_1146880;
—1 —1

-1
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B X 0.5
/N()d_1571_ fN()d—lOSl' /N()d_ 683
1048 = 53760° 4848 = 113560° 7848 = 1550240°
—-0.5 —-0.5 —-0.5
‘ 25309 ' ' 4201
No(t)de = 2227 Ns(¢)d¢ =0 Ng(©)dt = ———;
/ 2(8)d¢ 76880 / 5(¢)d¢ / 8(¢)d¢ 161280
-0.5 -0.5 —0.5
0.5 0.5 0.5
/N()d_1571_ /N()d_ 1051 /N()d_ 683
3048 =53760° 68 d¢ = ~113360° 9(8) 48 = 1550240°
-05 —-0.5 =05
1 1 1
/N() 1mn_ /N(M_ 1377 /de_ 81
16)d¢ = 1146880’ 4(£)dt = 1146880’ 7e)de = 1146880’
—-0.5 —-0.5 —-0.5
1
19359 1 1377
‘/'bh(f)dK——I7§§6, ‘/'A@(c)d; i t/‘h&(g)dg e
—-0.5 —-0.5 —-0.5
1 1
[ N de 468627 / Ne(©) de 72567 / No(2)dt — 4329 10
3¢ 1146880 6(¢ T 1146880 9(0)de = 116880"
—-0.5 —-0.5 —-0.5

Collection of terms at f;, f/ and f/” in Eq. (6) results into a direct stiffness procedure [2] executed for all finite

elements E;, k=1, ...,6. Thus,
to+7h
/ f®dt =h(a fi+axfr+asfz +aofa+aofs +azfe+axfr +aifs)

fo

+ 12 (b1 f] + bafs + b3 fi +bo fy + bo fe — b3 fo — by f) — b1 f3)

+ B3 f] +eafy sl Feof) +eofd Fesfl +eaf) Fefi), (11)
where the coefficients a;, b; and ¢;, i =0, ..., 3, are presented in Table 1.
It can be noted that the produced coefficients a;, b; and ¢;, i =0, ..., 3, can be used in integration formulas with

different numbers of time steps. For example, if the number of time steps is 8:
to+8h
/ f@)dt =h(a1 fi +ax f2 + a3 f3+ ao fa + ao f5 + ao fo + a3 f1 + a2 fs + a1 fo)

fo

+ W2 (b1 f] 4 bafs 4+ b3 f5 4 bo fi 4 bo fi 4 bo fi — b3 f5 — bafg — b1 f§)
R f] Feafy s Feof) +eofd +eofl +es i+ eafd +eifd). (12)

The minimum number of nodes required to integrate exactly polynomials of degree at most 8 (using the derived
coefficients a;, b; and ¢;, i =0, ..., 3) is 6. Later we will prove that the derived integration rule will also integrate
exactly polynomials of degree at most 9.

3. General case

Let us assume that the discrete values of a function f and its first two derivatives are given at time moments
to+@G—1-h,i=1,...,n

fi=flo+G—1-h), fl=rF(o+G—1)-h), f'=f"(to+G—=1)-h). (13)

Let us interpolate the nodal values of the function f in domain of integration using one-dimensional finite elements

with m nodes. Let us locate the first finite element E; in such a way that the co-ordinate of its first node is 79, co-
ordinate of the second node is 79 + h, co-ordinate of the mth node is #y + (m — 1)h. The second finite element E;
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Table 1

i 1 2 3 4 5 6 7 8

Coefficients at f;

E 468 627 19359 12717
1 1146330 17920 T146880
E 1571 25309 1571
2 53760 263880 33760
E 1571 25309 1571
3 53760 263880 53760
E 1571 25309 1571
4 33760 26880 53760
E 1571 25309 1571
5 53760 26880 53760
E 12717 19359 468627
6 T146880 17920 1146880
> 468627 233 3378247 1 1 3378247 233 468627
1146880 210 3440640 3440640 210 T146880
aj a az ag ag az aa ap
fante at £/
Coefficients at f:
E 72567 81 1377
1 1146880 2048 1146880
E, 1051 0 1051
143360 143360
E 1051 0 1051
3 143360 143360
E, 1051 0 1051
143360 143360
E 1051 0 1051
5 143360 143360
E 1377 81 72567
6 1146880 2048 1146880
) 72567 4619 7031 0 0 7031 4619 72567
T146880 143360 T146880 T146880 143360 T146880
by by b3 by by —b3 —by —b
: < o "
Coefficients at f:
E 4329 1377 81
1 T146880 35840 1146880
E 683 4201 683
2 1290240 161280 1290240
E 683 4201 683
3 1290240 161280 1290240
E 683 4201 683
4 1290240 161280 1290240
E 683 4201 683
5 1290240 161280 1290240
E 8l 1377 4329
6 1146880 35840 1146880
) 4329 10051 273599 1943 1943 273599 10051 4329
1146880 258048 10321920 71680 71680 10321920 258048 1146880
1 c2 c3 ) ) c3 () €1

is shifted with respect to E| by h—its first node is located at fo + &; second node at fg + 2k; last node at 7y + mh.
The nodal co-ordinates of the kth finite element Ej are as follows: ty + (k — 1)A (first node); #op + kh (second node);
to + (k +m — 2)h (last node). The process is continued until the last finite element E,,_,,+1 is placed—its first node
at to + (n — m)h; second node at o + (n — m + 1)k and finally the last node at #y + (n — 1)h.

Let us assign local co-ordinate ¢ for every finite element in such a way that the co-ordinate of the ith node ¢; is:
i—1
m—1’

=—1+2. i=1,....m. (14)

We will construct the shape functions of a finite element as polynomials of (3m — 1)st degree.
Ni@Q)=dio+din¢ + - +digm_1y¢> Y i=1,....3m. (15)
The first set of the shape functions satisfy the following nodal conditions:

Ni@¢)=1; Ni(¢)=0; N/@G)=0; N'()=0; i=1,....m; j=1,....m; j#Ii. (16)
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A : —
to+k=Dn 1g+kh  tg+(k+m—2)h

Fig. 2. Transformation of a time interval into the local domain of the kth finite element.

The second and the third sets of the shape functions satisfy such nodal conditions:

Nuti@) =05 Noi@) =1 Npo@D=0; Ni@)=0; i=1,....m; j=1,...,m; j#i, (17

Nomyi(6)=0; N3, (&) =0, Ny, .(G)=1; Ny, ()=0; i=1....m; j=1,....m; j#i.
(18)

One and only one set of coefficients d;o, d;i1, ..., di3m-1), i =1,...,3m, in Eq. (15) can be determined from condi-
tions in Egs. (16)—(18).
It is clear that the relationship between the global co-ordinate ¢ and the local co-ordinate (—1 < ¢ < 1) of the kth
finite element is:
—1
r=z0+h-mT-(;+1)+h(k—1), k=1,....(n—m+1). (19)

Then, the relationship between the nodal values of the function derivatives in the local and the global domain is
(Fig. 2):

df (&) _ h(m—1) Fo &) h*m—1)*

S = fitk—15 dc = ) “Jitk—15 d§2 = 2

e =1, m.
(20)

A continuous function f (¢) can be interpolated in the domain of the kth finite element:

. m h _ 1
f@o) = Z(mklzvi )+ %

i=1

h2m —1)2

Si i1 Nm+i () + )

'f,'/g_k_lNZeri(;))’ —1§§§1.
2D
It is clear that the function f (¢) is a polynomial of (3m — 1)st degree satisfying the nodal conditions:

A dfe) ., 2fe) .,
f(;i)ZfiJrkfl; dé’ = Jitk—1> d—é'zz itk—1- (22)
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Let us split the definite integral of f(¢) into n — m + 1 integrals
b to+M2 +(s—1)h

to+(n—1)h fo+77 n—m
/ f(t)dt = / f(o)dt + Z( / f(t)dt) + / f(r)dt.

to+1 +(s—2)h to+" +(n—m—1)h

to-+(n—Dh
(23)

0]
Introduction of relationship ¢ = fo + 0.5k (m — 1)(¢ 4 1) and assumption that the function f(¢) is a polynomial of the

(3m — 1)st degree leads to the following expression of the first integral on the right side of Eq. (23)

1

o+ =i =T
h(m — 1 h(m — 1) «
[ roa=""20 / reyag="""2y" / Ni(©)dg
= i=1

h2 -1 2 m h3 —1 3. m
LZ)‘ / Nm+,(c)d§+&2f” / Nop+i(§) d. 24)
i=1 e i=1
Analogously, relationship t =ty + h(s — 1) +0.5h(m — 1)(¢ + 1) (s = ., (n —m)), yields:
fo+ M 4 (s—Dh L ” T
h(m —1) h(m —1)
[ rwa=""00 [ poac =0 S ey [ Mo
to+ 1M+ (s—2)h — =l — T
h2 1 2 m
(m ) Zfl-i-s 1 / Nm+z(§)d§
ﬁ
(25)

h3 -1 3 m
LZ:fzﬂ] / Nom+i(£)dg.

m—1

Finally, at t = fg + h(n — m) 4+ 0.5h(m — 1)(¢ + 1):

to+(n—1)h 1
fiyar =101 / @) de = Zmn o [ Mioa

_L
—T

mfl

h2 -1 2 m
L)Z]CH_,I —m / Nm+l(§)d§

i=1

to-+ M2 +(n—m—1)h

i=1

1
h3 -3 &
('" )Zﬁ+n m / Nom+i(0)dt.
1
m—1

Let us denote the integrals of the shape functions as

s
1

C_

1
m—1 1
=/Ni(§)d§; ny = / Ni(¢)de; i=1,...,3m.

—1

m—1

N;(¢)dg;

—

3
1

(26)

27)
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Egs. (24)—(27) together with Eq. (23) yield:

to+(n—1)h h( m—1 n—2m
m —
foydi=——— [flnl + fong +nf) +-- +fm<n +an ) Y
0] j=1 i=1
m—1
+ fo—m+1 <n{? + Zn,cn_i+1> +-+ fn—l(”,l,i,] +n,€) + fnn,ﬁ:|
i=1
h2(m — 1)? c i,
+f f m+l+f2/(nr€l+2+nm+l)+“'+fr:l n§m+zn2m—i
i=1
n—2m

+ Z fm+j an—i-l

m—1
R c R c R
+ foem1 (”m+1 + Z ”zm—i+1) + ot fuoi(n2 g +05,) + fr:n2m:|

i=1
hS(m - 1)3 L L c L g c
+ s Singmir + 15 (030 + 15 00) + -+ f| 03, + Z”3m4

i=1
n—2m

m
" C
+ Z f;n—H Zn2m+i
j=1 i=1

m—1
R " R
+ fomt <"2m+1 + Z"3m H—l) + ot o (nh g H05,) + ”3m} (28)
i=1
It can be seen from the properties of the shape functions [2] that:
L R c c .
i =Nm—it1 Ny =Np—iv1s
L R c c :
Mti = ~Mom—it1- Mnti = ~Mom—ig 15
L R c c .
Mom+i = M3m—i+1> Mom+i = M3m—iv1> 29)
i=1,...,m.
Therefore the coefficients at f; and fm i+1 are equal. The coefficients at f;” and f,’ . 4 are equal too. The absolute
values of coefficients at f; and f, _ 41 are equal, but their signs are different.
Let us denote:
m—1 ; m—-1?% (m—17°
ar=-—>—ny; by = ——jr——”m+1’ cr= ——j;——”zm+n
2 3
m— L cy. (m—1) (m—1)
a=— (ny +n7): by=——Mn (2 F 11501 =—g (M52 +1511):

B m—1 12

am 1(nm+Zn,Cn ,)' b = =17 1) <2m+z Mom— z)
173 m—1

Cm = (m 1) < 3m+2n3m z)‘

m—1 (m—l -~ m—-1)73 &
aozTan; Z ;= TZ S (30)
i i=1 i=1



48 M. Ragulskis, L. Saunoriene / Applied Numerical Mathematics 58 (2008) 40-58

Then,
fo+(1—1)h n—2m
fdr= (alfl +arfot - Fanfmt Y A0 Smti + G fa-mit + o a2 oo +alfn> “h

1o i=1

n—2m
+ (blff +b2fs+ -+ b fr + Z b0 fri = bm fymir = = D2 fry —blf,f> -h?

i=1

n—2m
+ (clf{/+c2f2”+-~-+cmﬁ;{+ D cofmiitemty i et +c1f,;/> .
i=1

(31)
4. Properties of the weight coefficients
Let us assume that f(t) = C =constand n > 2m. Thus, f; =C, f/ =0, f/'=0,i=1,...,n.Itis clear that,
to+nh fo+(n—Dh
C- f dt —C- f dt = hC. (32)
to to
From Eq. (31) it follows that:
to+nh to+(n—1)h m m
C. / dt—C- / dt =hC<ZZai +ao(n —2m + 1)) — hC(ZZai +ao(n — 2m)> = aphC.
b b i=1 i=1
(33)

Comparison of the right sides of Egs. (32) and (33) produces equality ag = 1. Then, from Eq. (31) it follows that
to+(n—1)h m
C- / dt:hC(ZZai+n—2m>:hC(n—l), (34)
1 i=1

what leads to the equality:

" 2m—1
Ya=""" (35)
i=1

2

Let us assume that f(t) = Ct, C =constand n > 2m. Thus, f; =C(to+ (i — Dh), f/=C, f/'=0,i=1,...,n.
Then, analogously,

to+nh to+(n—1)h
Cc 1
C- / tdt —C- / tdt:5((to+nh)2—(t0+(n—1)h)2)=Ch(to+<n—E)h); (36)
1o 1o

fotnh fo+(n—Dh n—2m+1 n—2m
C. / tdt —C - f tdt:h( > fm+,-—me+i>
A A i=1 i=1
m m
+ h(z Am—it1 - fo—mtit1 — Zam—i-i-l : fn—m—i—i)

i=1 i=1
n—2m+1 n—2m
+boh2< Yo forim 2 fr:m')
i=1 i=1

m
=Ch (ro +(—mh+hY am_ip1+ boh). (37)

i=1
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Comparison of the right sides of equalities in Eqgs. (36) and (37) produces:

“ 2m — 1
> am-it1+ho=">—. (38)

i=1

what results into the following condition:
by =0. 39)

Now, let us assume that f(z) = % 12 Then, fi = $@to + (i — Dh)?, fil=Co+G—-Dh), f/=C,i=1,...,n.
Analogously,

to+nh to+(n—1)h
C C
5 / t2dt — > / 12 dt = g((ro +nh)? — (tg + (n — Dh)?); (40)
fo 1)
to+nh c to+(n—1)h m
2y / tzdt_g / t2dl:h'fn—m+l+h'zam—i+l‘(fn—m+i+l_fn—m+i)
) i) i=1
m
—h? meﬂ'ﬂ i = Fremie) F 10 f i S
i=1
Thus,
m 2
) 6m —1
co= 2(191‘ —iam—ip) + — 5 “42)
1=

Finally, the integration rule in Eq. (31) can be simplified to the following form:

to+(n—1)h n—2m m

m m m
fydi = (Zaiﬁ + D furi+ Zami+1fnm+i)h + (Zbif/ - me,-ﬂf,:_mﬂ)hz
i=1 i=1 i=1 i=1 i=1

fo

m n—2m m
+ (Zc,-f,f’ + D cofpiit Zcmi+1f,;’_m+,.>h3. 43)
i=1 i=1 i=1

It is clear that the derived integration rule is exact when the integrated function is a polynomial of degree at most
(3m — 1). We will prove that this integration rule is exact when the integrated function is a polynomial of degree at
most 3m, if only m is odd.

The numerical values of the coefficients in the integration rule (43) are presented at different values of m in Table 4.
The parameter p in these tables denotes the maximum degree of exactly integrated polynomials.

Theorem. With m even the integration rule given in (43) is exact when f(t) is a polynomial of degree at most
(Bm — 1). With m odd the integration rule given in (43) is exact when f(t) is a polynomial of degree at most 3m.

Proof. One and only one polynomial of the (3m — 1)st degree can be interpolated in the domain of the ith finite
element through the discrete values of the function f and its derivatives (Fig. 3):

f:'(t)=ri,0+ri,lt+"‘+ri,(3m71)t(3m_l)- (44)
Many different polynomials of the 3mth degree can be interpolated through the same points:
Pi(t) =si0+siit 4+ +5i 3" 45)

Coefficients r and s in Eqgs. (44) and (45) are real numbers. Let us calculate the difference between the polynomials
in Egs. (44) and (45):

Ai(t) = Pi(t) — f; (1) (46)



50 M. Ragulskis, L. Saunoriene / Applied Numerical Mathematics 58 (2008) 40-58

St
AON
on
R =,
t, +(i=1)h t, +ih to+(i+m=2)h

- E, >

Fig. 3. Interpolation in the domain of finite element E;.

Then, the derivatives A’ (r) and A7 (r) will be:
Aty =Pty — fl): Ay =P'¢) - f ). (47)

Both polynomials f, (t) and P;(¢) do not only interpolate the function values, but also satisfy the nodal conditions for
derivatives. Thus the abscises on the nodal points will be the roots of polynomials A; (z), A:. (1) and A;’(t):

Aito+jm) =0, j=@G—-D,i,....,0 +m—2);
Aj(to+ jh) =0, j=@G—1,i,...,30 +m—2);
Alto+ jh) =0, j=G—1,i,...,(i +m—2). (48)

Keeping in mind the result in Eq. (48) and in accordance to the Viete theorem [9], polynomial A;(#) can be expressed
like:

Aty =sim[t —to— G = DRt =10 — ihP - [t =19 — (i +m — 2)h]’. (49)
Introduction of a new variable ¢ = ﬁ (t—to—(+ mTﬁ)h) helps to simplify the expression of A;(¢):

3\° —3\?
Ai<;>=si,3m<;+1)3<c+—) ~~<;—’"—) ¢ —1°. (50)

m—
m—1 m—1
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Then the integral of A;(¢) in the domain of the ith finite element is:

to+(i+m—2)h h( 1) 1
.
Aty ="" =0 / Ai(0)dt. 1)
to+(i—1)h -1

Let us assume that m is odd. Then the integral in Eq. (51) is equal to zero because the integrand is an odd function
and the limits of the integral are symmetric around the origin. The limits of the integrals in the domains of the internal
finite elements E;, i =2,3,...,(n —m), are —ﬁ <¢ < % (Eq. (25)). Therefore these integrals are also equal to
zero due to the symmetry of limits.

The limits of integration for the first finite element are —1 < ¢ < ﬁ The limits for the last finite element are

—ﬁ < ¢ < 1. But the domains of integration for the first and the last finite elements can be simplified:

1 1
—1

s 1 w1 1
/Al(C)dC-l- / Ap—m+1(£)d¢ = / Al(()d§+/An—m+1(C)d§- (52)
Z1

__1 -1 _L

m—1 m—1
Let us assume that the integrated function f(¢) is a polynomial of degree at most 3m. Then the coefficients s in
Eq. (45) do not depend from i. Particularly,

$1,3m = S(n—m+1),3m- (53)

Then the sum in Eq. (52) is equal to zero due to the symmetry of the limits. Finally,

m—1

n—m ﬁ 1
/Al(g)duz f A dE + [ An-ms1(©)dg =0, (54)

1

m—1

e i=2_ 7y _

m—1

Thus the derived integration rule is exact when the integrated function is a polynomial of degree at most 3m and m is
odd.

If m is even, the function A;(¢) in Eq. (46) is even and its integral is not equal to zero though the integration
limits are symmetric around the origin. In that case the integration rule is exact only when the integrated function is a
polynomial of degree at most 3m —1). O

Algorithm. The derived integration rule (Eq. (43)) can be presented in the form of the following algorithm.

0. Define the time step /. Select the parameter m (the degree of exactly integrated polynomial). Initialise Sumgk) =0,
Sumék) =0, Sumgk) =0(k=2,...,m)andi =0. Allocate memory for 3(m — 1) queues of k elements: Q(k), Q;k)
and O, k=2,...,m.

1. Get a new set of function values (f, f’, ). If a new set of function values is available—go to Step 2. Otherwise
go to Step 5.

2. Increment counter i =i + 1; save current values f, f/, f” in the queues o®, Qék), ng), k=2,...,m, accord-
ingly. When saving an element in a queue, the queue’s cells are shifted, the last element is deleted and the new
value is stored in the first element of the queue.

3. Repeat for all k from 2 tom
If i > k, then

Sumgk) = Sumﬁk) + f;

Sum = sum$ + ¢ (0) - £
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Otherwise
Sum® = sum +a® @) - f:
Sumg{) = Sum;k) +b60 ) - f;
Sum$? = Sum +c® i) - £

4. Goto Step 1.
5. Repeat for all k from 2 to m
If i > 2k, then repeat for all j from 1 to k:

Sum(® = Sum + (a® (j) - 1) - 0 (j);
k k . k), .
Sum = sum® — b® (j) - 08 (j);
Sumgk) = Sumgk) + (c(k)(j) —c® 0)) - ng) (.

6. Repeat for all k from 2 to m:
If i > 2k, then calculate and display the integral:

10 = Sum'® - n 4 Sum® - 1 + Sum - n3.

Otherwise display warning message ‘“Data series is too short for degree k.
and STOP.

5. Error estimates of the integration rule

The sampled function f is interpolated in the domain of the kth finite element as a polynomial f of degree
Bm —1).

Let us assume that the integrand has at least 3m bounded derivatives in this domain. Then the error of interpolation
in the domain of the kth finite element is calculated as:

ex(t) = fi(t) — fu(®)
= fi[t.to+ (k= Dh,to+ (k — Dh, 1o+ (k — Dh, ...,

3
to+ (k+m —2)h,tg+ (k+m —2)h, 1o+ (k+m —2)h] - (1), (53)
3
where
filt to+ (k— Dh,to+ (k — Dh,tg+ (k — D)h, ... 10+ (k+m — 2)h, to + (k +m — 2)h, tg + (k +m — 2)h]
3 3

is the 3mth divided difference in the kth finite element; w(r) = (t — tg — (k — Dh)3(t — 19 — kh)3 - (t — to — (k +
m — 2)h)3. It must be noted that each node of the finite element is repeated thrice in the divided difference.
Compound error of the derived quadrature rule (Eq. (23)) takes the following form:

tﬁ-% n—m to+h7m+(s—1)h fo+(n—1)h
Ru= [ e Z( [ eoa)r [ o (56)
fo $=2 to-+ M2 +(s—2)h to+ M2+ (n—m—1)h

Introduction of a new variable ¢ = m (t—1to— (k+ ’"T_3)h) helps to simplify the expression in Eq. (56):

1 1
n—m m—1 L

m—1
him —1
Rsm=%~(/ e1(C)d§+Z< / es<;>dc)+ / ean(c)dq), (57)
s=2

—1 1 1

Tm—1 m—1

where ex(¢) = fil¢, —1, =1, —1,.... 1,1, 11- 0*(0); 0* () = (¢ + D3 + 2=)3 - (¢ — 2=)3 g — 1)3.
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The integrals on the right side of Eq. (57) are evaluated as follows:

1. If m is odd,
1 1
ml f(3m+l)(c) ml .
/Ek(C)d§=m' / -0 (8)dg, (58)
_’71171 _ﬁ
1 _ 1 1
m— m—1 m—1
/elmdg: / e1(O)de + / 1) de
| e L
(3m) it Gm+1) mt
=%- / w*(;)duﬁ- [ cor@ae (59)
21 o
m—1
| i T
f en i1 (£)dE = / en-mi1 (€)dE + / en i1 (©)de
_ﬁ mlfl _ﬁ
(3m)( ) P (3m+l)( ) ﬁ
=f(37;‘- w*(:)duﬁ- / ¢ w*(§)de. (60)
= ~ T
2. If m is even,
ml—l f(3m)(c) ﬁ
ex($)d¢ = : *(¢)de, (61)
(Bm)!
- -
1 1 1 1 1
m—1 m—1 m—1 f(3m)(c) m—1 . m—1 .
[a@de= [ awas [ aoa=t 0 [ oods [ ood)| o
1 —1 __1
m—1

—1 __1
m—1

_1

1 m—1

1
/en7m+](§)d§=‘/.enfm+l(§)d§+ / en—m+1($)d¢
1

1 1
m—1 m—1 m—1
1

=
(63)

1
(3m)
= f(3m)(16) |: / w*($)d¢ + f w*({)d;“:|,

m—1 m—1

where the 3mth and (3m + 1)th derivatives are evaluated at any point in the local domain of every finite element
(c, c1,c2 € [—1; 1]). These evaluations are produced applying analogous techniques used for the derivation of

error terms in Newton—Cotes quadrature rules [6].
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Finally, Egs. (57)—(63) lead to the following estimations:

1. If m is odd, the estimation of the compound error term of the derived integration rule:
1 h(m — 1)\ +? 4, AGm+ 1)

Gm+1!\ 2 Yhim —1)

where M = sup, | ™ (x)|, My = sup, | f "D ()|, x € [to; 10 + (n — 1)h].

2. If m is even, the estimation of the compound error term of the derived integration rule is:

m(%) 2L+ 0 —m+ D), (65)

|R3m| < 11+M2(n—m+1)12>, (64)

|R3m| <
where M = sup, | f 3™ (x)|, x € [to; to + (n — 1hA].

Integrals I, I> and I3 in Egs. (64) and (65) can be calculated as follows:
1 1
1 e m—T
[ 0@ [ cor@ae | @
1 1

1
m—1 T m—1 m—1

T m—1

11=‘ / w*(¢)d¢| = ) L= ; I3 = . (66)
el

It can be noted that the complementary factors (h(m — 1)/ 2)3+ and (h(m — 1) / 2)3 in the first and the second
error estimations follow from the relationship between the nodal values of the function derivatives in the local and the
global domain (Fig. 2).

It is clear that the number of nodes 7 is proportional to 1/ 4. For this reason the error term of the derived integration
rule is of order 73+ if m is odd and of order 3™ if m is even.

Compound error estimations for several values of m are presented below:

m=2 |R¢|<M-h’

(n—1), where M = sup]f(ﬁ)(x)‘.
X

100800
1 8299

=3t |[Ro|<h'(Mi————— +Mh———————(n—2)),

m |Ro| ( 'T1468800 T " 4291854336 000" ))

where M| = sup|f(9)(x)|, My = sup|f(10)(x)|.
X X

3617 673
=4: |Rpp| <M -n" —3)), where M = 2 ().
" IRz (2054916864000+4109833728000(n )> where Slip|f |
6 1515 6610230619
m=5: |Ris|<h™”| M + Mah (n—4)|,
52665962725376 350004 624 284 807 331 840 000

where M| = sup|f(15) (x)|, M, = sup|f(16)(x)|.
X X

6. Concluding remarks

The derived integration rule is a generalisation of the trapezoidal rule both in the sense of the degree of exactly
integrated polynomial and in the sense of the number of discrete values of derivatives of the integrand at every node.
Particularly, we demonstrated the derivation of the rule for three nodal values— f;, fi’ and fi’ ’_ 1t has been shown that
the degree of precision of this rule is increased by one, only if the parameter m is odd. Natural is the interest how
the integration rule would look like if the number of nodal values of the integrand is different. When this number is
one (only f;), the integration rule is presented in Table 2. It can be noted that the degree of precision of this rule is
also increased by one if m is odd. What would happen when two nodal parameters (f; and f/) are given at every
node?

In general, the derivation of such integration rule is analogous to the one presented in this paper. The weights of
such integration rule are presented in Table 3. Nevertheless there is a substantial difference in regards to the degree
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Nodal weights of the integration rule with nodal values of f;
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m 2 3 4 5 6 7
ag 1 1 1 1 1 1
a 1 3 1 95 S 5257
1 2 8 3 288 160 17280
a 1 7 31 317 91 22081
2 6 24 240 720 15120
a 23 5 23 59 54851
3 24 6 30 90 120960
a 25 793 97 103
4 24 720 80 70
a 157 1333 89437
5 160 1440 120960
91 16367
a6 90 15120
23917
a7 24192
ST g 3 5 7 9 1 13
i=1% 2 2 2 2 2 2
P 1 3 3 5 5 7
l 2 4 4 6 6 8
Table 3
Nodal weights of the integration rule with nodal values of f; and flf
m 2 3 4 5 6 7
ag 1 1 1 1 1 1
a 1 1131 223 161002985 477033 10686787637771
1 2 2560 567 445906944 1408000 33 124515840000
a 1 31 649 2075083 164 837 1560978733133
2 30 672 2580430 285120 5101 175439360
a 7871 47 731 8527 6096817 066859
3 7680 n 630 8910 20404701757 440
u 18541 11536369 5051 15549
4 18144 9953280 3520 10010
a 9316481 5383903 3369006926303
5 9175040 1561920 1854972887040
a 450367 761963150017 127
6 445500 637646929920000
a 373987201123
7 370994577408
moo. 3 5 7 9 1 13
Dl ai 2 2 2 2 2 2
p 3 5 7 9 11 13
bg 0 0 0 0 0 0
b 1 153 43 2783825 31989 1060070310089
1 12 2560 945 74317824 985600 36436967 424000
b 0 _ 101 43 665683 11683 37023276497
2 1920 288 2580480 31680 77290536960
b 53 97 _ 2879083 _ 886799 _ 4380729864067
3 7680 1260 10321920 1330560 3400783626240
b 163 1796843 30343 890704364 161
4 30240 23224320 73920 637646929920
b _ 15867 _ 390869 146993461711
5 4587520 5322240 261598 740480
b 19 1485451216771
6 34650 21254897664 000
b 3238339925
7 2040470175744
b 1 1 563 3080299 2830321 1040196577921
i=17i 2 3840 3024 5308416 1900800 276037632000
)4 3 5 7 9 11 13
I 4 6 8 10 12 14
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of precision of the rule—it is not increased by one neither when /m is odd nor even. That is because the difference
between the polynomials P;(¢#) and f;(¢#) (Eq. (46)) is an even function and therefore its integral is not equal to

Z€ro.
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Fig. 4. Degrees of precision of the derived integration rule for different number of nodal derivatives.

Moreover, such analysis can be extended to larger numbers of nodal parameters (derivatives of the integrand), and
the rule’s degrees of precision are increased by one only if both the number of nodal parameters and the parameter m
are odd numbers. This result is illustrated in Fig. 4.

Natural is the question if the derived integration rules are re-discovered, or are they new. And if they are new, how
they can be compared with the existing rules.

Let us start from Table 2. For odd m the rules coincide with Gregory formulas [6]. For even m these are new
rules, though they are worse in the sense of the degree of precision if compared with Gregory formulas. This can be
explained by the property of finite element direct stiffness procedure used to sum the interjacent integrals. For even m
the finite elements do not have a central node. Instead, all middle finite elements are integrated over one middle section
between 2 closest nodes around ¢ = 0 (Eq. (25); compare with Fig. 1). Then the difference A;(¢) (Eq. (46)) becomes
an even function and improvement of the degree of precision is impossible. In this sense the proposed derivation
methodology has a definite drawback compared with Gregory formulas. Nevertheless the main advantage of the finite
element methodology is its universality which reveals its power when the number of nodal parameters is higher.

Table 3 presents a set of rules with 2 nodal parameters. At m = 2 the derived rule coincides with Euler—-Maclaurin
formula of degree 4 [12]. But at m = 3 the derived rule does not coincide with Euler—Maclaurin formula of degree 6.
Closed form Euler—Maclaurin formulas contain Hermite conditions only at the first and the last node of the equally
spaced mesh. Rules with 3 nodal parameters are presented in Table 4. At m = 2 the derived rule coincides with Euler—
Maclaurin formula of degree 6. Though there exist numerous variations of Hermite type integration rules (closed,
half closed, open form), we could not find existing rules for higher m and higher number of nodal parameters. Lots
of efforts have been spent for adapting Hermite type integration rules for functions containing singularities [6]. Then
adaptive step partition manipulations together with Hermite conditions can produce excellent results [13,14], but that
is out of scope of interest in this paper. It could be also mentioned that the derived compound integration rules can be
modified by repeated elimination of the leading contribution to the error what would lead to Romberg type quadrature
rules [1,3]. Again, this is out of scope of interest in this paper.

The proposed derivation procedure of closed symmetric integration rules with equally spaced steps can look rather
complicated and requiring calculation of a lot of definite integrals. It can be noted that all calculations are presented
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Nodal weights of the integration rule with nodal values of f;, f/ and f!’

m 2 3 4 5 6 7
ag 1 1 1 1 1 1
u 1 468627 7031 17305794401515 417106011693 48 180824039771 567965037
1 2 T146 880 8711 I8971284217856 1244672000000 150 181475046653 952 000 000
a 1 233 38501 204438506933 20345846219 206011279954 107588811
2 210 29568 125954949120 9073 658880 64313008 137625927 630
a 3378247 373 643 15202822  3158402637978950 168951
3 3440640 162 2310 3860995 397571323 032596643 840
u 2430347 38377978002737 37276477 282689
4 2395008 30607052636 160 12446720 22610
4 332943261457 184995 864 527 _ 1621678895300798844553
5 335879864320 290357084 160 397571323 032596 643 840
4 222914844343 5128938983 828079463 338377
6 221524875000 3416628557311 377408 000000
4 66953476438970650 141
7 67281300820900970496
mo. 3 5 1 9 11 13
Dt ai 2 2 2 2 2 2
p 5 9 11 15 17 21
b 0 0 0 0 0 0
b 1 72567 544 745044996725 35402551029 267306874 875933237877
1 10 1146880 10395 16323761405952 871270400000 7230959909 653 708 800 000
b 0 4619 2987 59706290989 564486975959 5403390 123590504612 107
2 143360 114048 412216197120 1512276430000 7592507905 136 394 240000
b 7031 70423 471049895711 2681731110787  64125927127057863413447
3 1146880 997920 7534378163320 10585935 360000 30370031620545576960000
b 5941 549606126943 50324291011 977475665283 693302471
4 1330560 5820914787840 90478080000 949063 488 142049 280000
b 116707797 5479922436227 4655898921426 303093323
S F7982 837760 42343 741440000 2760911965 504 143 360000
b 337296347 _ 586824618897907962107
6 206756 550000 3451 139956830 179 200 000
b 19424780649 112775
7 16197350 197624307 712
m o 1 21323 57731 118071449341 4050588994669 _527413612979965 885553
i=1Yi 10 373440 399168 582991478784 T5 122764 300000 602579992471 142400000
p 5 9 11 15 17 21
‘ 1 1943 745 277671235 67959973 172429570836 366 193
0 60 71680 33264 T0796 138496 2800512000 6779024915 300352000
¢ 1 4329 17 17681479625 155878227 9980849704717 234819
1 20 1146880 6237 3161880702976 87127040000 6507863918 638 337920000
¢ 1 10051 16249 9500590123 133 188945397 30 130767945731493 823
2 60 258048 266112 107961384960 1058593 536000 175211720887 762944000
c 273599 1901 1209995473 318112621103 _ 8177517189123713434979
3 10321920 332640 19377684430 1058593 536000 9111009486 163673088000
c 90913 859490879719 8875460311 131565767224689072 151
4 3991680 20404701 757440 39207 168 000 94906 348 814204928 000
c 38592183053 24974306963 3562763 582204547 656029
5 1511459389440 4234374144000 9111009436 163673088000
c 64527750293 527853270550774109713
6 2646483 840000 11388761857 704591 360000
. 231019546137 184022767
7 9111009486 163 673 088 000
S e 1 1985 877 686481 605 42646633 357613 114421283763
i=1Ci 70 28672 9504 7197425 664 509 184000 1042926910046208 000
p 5 9 11 15 17 21
1 6 10 12 16 18 22
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explicitly only for clarity. In fact finite element techniques are exploited to derive the coefficients of the symmetric
quadrature rules. Particularly, symbolic calculations are used as the coefficients of the integration rules are usually
presented as rational numbers. Therefore the derivation of the rules is straightforward, universal and rather simple.
Shape functions of Lagrange finite elements, direct stiffness procedure, solution of a system of algebraic equations
are standard objects in any finite element package. No sophisticated techniques of combinatorial algebra or functional
analysis are required for that purpose. Every engineer with basic symbolic programming skills and some knowledge
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of finite element techniques can easily derive the integration rule of any required degree and specified number of nodal
derivatives of the integrand.

Finally it can be noted that the derived quadrature rules can be very effective in such situations when the number
of nodes is not known at the beginning of the integration process what is common in experimental analysis where the
nodal values of the integrand are generated as sequences of discrete numbers.
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