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The concept of the order of a 2-sequence is introduced in this paper. The order of a
2-sequence is a natural but not trivial extension of the order of one-dimensional (1D)
linear recurrent sequences. Necessary and sufficient conditions for the generation of
2-sequences with finite order from the minimal information subset are derived. It is
demonstrated that the order of 2-sequences can be used to estimate the complexity of

self-organizing patterns with respect to each spatial coordinate.
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1. Introduction

Recurrent sequences play a central role in a large variety of mathematical algorithms
and applications. Some of the best known examples of recurrent sequences are
used in computational biology. The logistic map was used to model a population
growth [20]. The logistic map is often used to illustrate how complex behavior
can arise from very simple equations [38], to model [5, 8], to predict [22, 24], to

encrypt [27, 37] different physical systems and processes.

Optimal estimation of recurrence structures in neurophysiological time series
obtained from anesthetized animals is used to classify the subject’s state of con-
sciousness in [1]. Recurrences are widely applied in the theory of recurrence plots,
which is a powerful technique for the visualization of the behavior of dynamical
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systems in phase space [6, 19]. It is shown in [39] that a population code integrating
distance naturally emerges in the hippocampus in the form of recurring sequences.

Models incorporating linear recurrent sequences (LRS) are widely used in digital
signal processing for system identification when given a sequence of output data and
a realization of an underlying state-space model is desired. A first solution to this
challenging system-theoretic problem that became as the state-space realization
problem was provided in 1965 in [12]. The key tool for solving this problem is the
Hankel matrix, whose factorization into the product of an observability matrix and
controllability matrix is known as the Ho—Kalman realization method [12]. Tt took
years of research to go from the theoretical results described in [12] to a numeri-
cally reliable realization algorithm [4]. Gathering outputs from an impulse-response
simulation into a generalized Hankel matrix and its singular value decomposition
(SVD) helped to obtain reduced order models for high-dimensional linear dynamical
systems [11].

LRS are widely used in analysis of algorithms [3]. The running time of an algo-
rithm can be described in a recurrence relation if it can be broken into smaller
subroutines [36]. LRS are also widely used in economics where the functionality of
financial sectors depends on lagged variables [34]. LRS are successfully exploited
for time series analysis [32] and the construction of solutions to nonlinear ordinary
differential equations [26].

The classical one-dimensional (1D) LRS (zg, 1,2, ...) is defined by the linear
relation [7]:

Tjtn = Q1Tj4tn—1 + Q2Tj4n—2 + -+ Qnly, (1)

where a, € R, k= 1,...,n. Given the initial values zo, ..., z,_1, each subsequent
term is determined according to (1).

There is a number of generalizations of 1D recurrent sequences to two or more
dimensions. Prunescu considers recurrent two-dimensional (2D) sequences over the
finite field A in [30]: given vectors A € A", u € A™; n,m € N, a recurrent 2D
sequence is defined as the mapping a : N x N — A, where

(1) VZZOQ(Z,O):Ai mod 73
(2) Y5 >0:a(0,5) = itj mod m;
(3) VZ,] 2 L: a(ZL]) = f(a(Z - 17.j)7a(i - 17] - 1)7a(i7.j - 1))a where f : -’43 — A

It is demonstrated that such 2D recurrent sequences can be produced by context-
free substitutions and can generate realizations of well-known fractals in [28]. Tt is
shown that in the case A = K, where K is Klein’s four-element group (the smallest
noncyclic group) and f is a linear function

flx,y,z) = Az + By+ Cz, A,B,C = const., (2)

the resulting recurrent 2D sequences can be classified into 90 groups by their geo-
metric content [29]. A summary of these results can be found in [31].
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Multidimensional LRS and linear recurrent arrays over quasi-Frobenius rings
and modules are discussed in [18] and [21], respectively. It is demonstrated that
n-dimensional LRS over a module can be expressed in the canonical form using
eigenvalues of Hankel matrices that are constructed from the sequence [14].

The main objective of this paper is to present an alternative definition of 2D LRS
(we will refer to them as 2-LRS) over the field of complex numbers C, utilizing only
1D LRS. It is shown that the existence of the canonical expression of a 2-sequence is
necessary and sufficient for the 2-sequence to be linearly recurrent. Furthermore, it
is shown that the entire 2-LRS can be reconstructed from the minimal information
subset.

The extension of 1D LRS to two dimensions could open new possibilities for the
analysis of digital images. One of the objectives of this paper is to develop a new
technique for the evaluation of image complexity based on the generalization of the
canonical expression theorem for 2-sequences.

The paper is organized as follows: preliminary definitions and properties are
discussed in Sec. 2, the proof of the canonical expression theorem and the derivation
of the minimal information subset are given in Sec. 3, the application of the concept
of 2-LRS for the analysis of self-organizing patterns is presented in Sec. 4, concluding
remarks are given in the final section.

2. Preliminaries
2.1. Definition and properties of LRS
2.1.1. General LRS

Let R be a commutative ring. Any function P : Zg — R is called a sequence over
the ring R and the set of all sequences is denoted R{Y. The elements of the sequence
are denoted as pj,j € Zo and the sequence itself is denoted as P = (p;,j € Zy).
The product of a polynomial f(\) = Zf:o fs\* € R[)] and a sequence P € R is
defined as:

fOP=v, veRY, v =3 fuperk (3)

s>0

Definition 1. A sequence P € RV is called an order m LRS (1-LRS) over R if
there exists a monic polynomial f(A) € R[A] of order m such that f(A)P = 0. The
polynomial f(\) is called the characteristic polynomial of P and the first m values
of the sequence (po,p1, ..., pm—1) are called the initial vector of P [14].

For example, the Fibonacci sequence is second-order 1-LRS over Z. It’s charac-
teristic polynomial and initial vector are 22 — 2z — 1 and (0, 1), respectively.

Note that the elements of 1-LRS can be computed using n preceding elements
of the sequence [7]:

Dk4+n = Sp—1DPk+n—1 + *** + SoDk-. (4)
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A function X : Z2 — R is called a 2-sequence and the set of all 2-sequences over
R is denoted R(®). In the context of this paper, a 2-sequence can be considered as
infinite matrix or data array, with elements denoted xy;; k, [ € Zg and the 2-sequence

itself denoted X = [&C]r]ﬁ?o 0

Consider a bivariate polynomial f(A, ) = Zf:() Zf:o fseA*ut € R\, p]. The
product of a polynomial and a 2-sequence is defined as:

fOWX =v, veR? Z St Thots,i4t- (5)

s,t>0

Definition 2. A 2-sequence X € R(? is called a 2-LRS if there exist monic poly-
nomials f1(A), f2(u) such that (f1(A\)f2(p))X =0 [14].

Theorem 1 (Canonical form of 1-LRS and 2-LRS). Suppose the character-
istic polynomial of 1-LRS can be written as:

F) = =A)" - (A=X)™, (6)

then the elements of that sequence can be expressed in the canonical form:

where A\, ks € R.
Suppose the characteristic polynomial of a 2-LRS can be written as:

SN fa(p) = (A= A)™ - (A= An)™ (= )™ - (= pm)™™ (8)

then the elements of that 2-sequence can be expressed in the canonical form:

=SS () (O )

k=1 s=0 [=1 t=0

where A\, ug, c,(:lt) € R.

The coefficients present in both canonical forms, & and c}jt) respectively, are

determined to fit the initial conditions of the recurrences.

2.1.2. 1-LRS over C

In this and all subsequent sections of this paper, we will deal with linear recurrent
sequences over the complex field, thus R = C. For 1-LRS over C there is a convenient
criterion based on the Hankel matrix which simplifies the determination of the order
of the sequence.
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Let us consider a complex-valued sequence P. Using P, a sequence of Hankel
matrices (Hp;n € N) can be formed:

Po b1 Pn-1
p1 p2 - Pn
H, = ) o ) . (10)
Pn—1 Pn - DP2n—2

The Hankel mapping (d,,;n € N) reads:
dy, := det(H,,).
Definition 3. The sequence P = (pj;j € Zo) is an order m € Zg; (m < +00)
1-LRS over C, if the Hankel mapping of that sequence has the following structure:
(di,...,dm,0,0,...), (11)
where d,,, # 0 and dyyp =0, k=1,2,....

Note that Definition 1 with R = C and Definition 3 are equivalent.
The characteristic polynomial for the order m 1-LRS (p;;j € Zo) can be
expressed as:

Po pr - Pm
p1 P2 - Pm+1
f) = (12)
Pm—-1 Pm - P2m-—1
! A e AT

Expanding the determinant in (12) yields an mth order polynomial:
JOA) =A™ + -+ Aid+ Ap, (13)
with A,, # 0 according to (11).

Theorem 2 (Canonical form of 1-LRS over C). Suppose P = (p;;j € Zo)
is an order m 1-LRS and the roots of its characteristic polynomial are A1, ..., \
with multiplicities mq, ..., m;. Then 22:1 myg = m and the elements of P can be
expressed in the canonical form:

I mp—1 . ]
pi=Y. D s (J) M (14)

k=1 s=0

where A\, Eks € C; Ekmy—1 # 0. Note that 0°:=1 and (g))\k = 0 if at least one of
the factors is zero.

The reversed statement is also true. If (14) holds, then P = (p;;j € Zo) is a
1-LRS of order m.
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Note that in the general case, sequences defined by the expression (7) are not
necessarily 1-LRS, but over the complex field, sequences are 1-LRS if and only
if (14) holds [25].

Remark 1. The coefficients &5 in (14) are determined in order to fit the initial
conditions of the recurrence:

I mr—1
Zkz <))\]s—p], j=0,...,m—1, (15)

where the characteristic roots A1, ..., \; are known. This system has one and only
one solution [25].

Remark 2. Suppose that P = (p;;j € Zy) is an order m 1-LRS and the first 2m
elements are known. Then, using (13), (14) and (15) all elements of that sequence
can be determined.

Remark 3. Suppose that P = (p;;j € Zg) is an order m 1-LRS and @ = (pjyx;J €
Zy),k € Zg. Then, @ is an order m, 1-LRS, where mq, < m.

2.2. 2-sequences

This section is dedicated to the definition of 2-sequences and introduction of some
notational conventions. Complex 2-sequences X := [J;jr];ff‘;o, where zj,. € C are
considered.

Any 2-sequence has two elementary families of 1-sequences:

Ri(X) := (k7 € Zo), (16)
for fixed k € Zg is called the kth row sequence of X. Likewise,

Ci(X) = (zj; ] € Zo), (17)
for fixed [ € Zg is called the Ith column sequence of X.

Example 1. Let X = [xjr]jffo:m where zj0 = (j+2)!, zjr = 142,15 =0,1,...;
r=1,2,.... It can be seen that:

2 3 4 5
6 7 8 9
X=los 95 26 27

The row sequences R;(X) = (7 +2), (i +2)!+1,...,(7+2)! +r,...) are order 2
1-LRS for j = 0,1,.... Since all of the row sequences have a single characteristic
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root A\; = 1 and its multiplicity is n; = 2, elements of X can be expressed as:

2 = &4 +§(])< )

Coefficients 590)7 ) can be found using the first two elements of the jth row of X.

For example
© 0
:2'
+e0(7) =2

()

yields £ =2, ¢9 = 1. It can be verified that £ = (j +2)!, €% = 1, thus the
coefficients differ for each 7 =0,1,....

3. The Order of a 2-Sequence

In this section, the order of a 2-sequence based on the concept of 1-LRS is intro-
duced. The main goal of this section is to present the canonical form and the
minimal information subset of linear recurrent 2-sequences.

3.1. Row and column order of 2-sequences

Definition 4. Let X = [xjr];ff‘;o. Suppose that each row sequence Ry (X), k =
0,1,...1s a 1-LRS and A is the finite set of characteristic roots in row sequences
Ri(X), k=0,1,... (omitting repetitions of roots). Thus A = {A1, Ao, ..., \u}, n <
+00. The multiplicity of A € A is defined as ny = max;>o n,(C ) < 400, where n(])
is the multiplicity of A in sequence R;(X) (if Ax is not a root of the characteristic
polynomial corresponding to R;(X), then n,({j ) = 0). If these conditions are met,

X has a row order equal to N = Y| ny.

Elements of set A are called the row characteristic roots of X.

Remark 4. Suppose X has a row order of NV and its row characteristic roots are
A1,y Ay with multiplicities nq, ..., n,. Then, by Theorem 2, elements of X can
be written as:

oY S e (D) (18)

k=1 s=0

where coefficients §,(€i) € C are different for each j in the general case.

Definition 5. Let X = [acjr]j:f';o. Suppose that each column sequence C;(X), | =
0,1,...isa 1-LRS and M is the finite set of characteristic roots in column sequences
Ci(X), 1 =0,1,... (omitting repetitions of roots). Thus, M = {u1, 2, -, thm},

m < +oo and the multiplicity of each y; € M is defined as m; = max, >0 ml(r) <
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+o00, where ml(r) is the multiplicity of p; in sequence C,.(X) (if y; is not a root

of the characteristic polynomial corresponding to C,.(X) then ml(r) :=0). If these
conditions are met, X has a column order equal to M = >, my.

Elements of set M are called the column characteristic roots of X.

Remark 5. Similarly to Remark 4, if column characteristic roots of X are

W1y oy With multiplicities myq, ..., my,, elements of X can be expressed as:
m m;—1 ]
j—t
me =20 3l ()™ s)
I=1 t=0

where coefficients 771(: ) € C are different for each 7 in the general case.

Definition 6. A 2-sequence X has a 2D order ord, if it has both row order and
column order. It is denoted as:

orde X = (N, M), (20)

where N is the row order and M is the column order of X. If X only has finite row
or column order, it is denoted as:

orde X = (N, +00); orde X = (400, M),
respectively. If X does not have finite row and column order, the notation is
orde X = (400, +00).

Note that it is sufficient to have ords X = (N, +00) for (18) to hold and orde X =
(400, M) for (19) to hold. In Example 1, orde X = (2, +00), because the factorial
sequence is not a 1-LRS. An example of a 2-sequence with infinite order is given by
X = [wj0] 720, where zj, = (jr)!.

Example 2. Suppose X = [xjr];ffio, where zj, = (j 4+ 1)(r + 2)%. Then, the row
order of X is 3 and the column order is 2, thus ords X = (3, 2).

Note that it is not sufficient for the characteristic root sets A, M of to be finite
for a 2-sequence to satisfy Definition 6. Special attention should be directed to how
the multiplicities of the characteristic roots are calculated.

Example 3. Let D = [5jr];fr°i0, where §;, is the Kronecker delta.

1 0 0 O
D=0 1 0 0 ---]. (21)

It can be observed that Ri(D) = Cyx(D) = (0,0,...,0,1,0,...) where only the
kth element is nonzero. The order of Ry (D) and Ci(D) is k. However, since the
row sequences Ry (D) have a single characteristic root A\; = 1 with multiplicity
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ngk) = k, the maximum multiplicity in all row sequences of D of characteristic root

A1 is np = maxy>g ng ) — maxy>0 k = —+00, thus the conditions of Definition 4
are not met and D has an infinite row order. Since in this case the kth column
and row sequences are congruent, D also has an infinite column order and thus

orde D = (+00, +00).

Remark 6. Suppose that orde X = (N, M), where X = [ij]JT o- Let YV =
[yjr];ffio, where Y, = jikrq1; k1 € Zg, then ordeY = (N1, M), with Ny < N
and My < M.

Proof. By Remark 3, the order of R;(Y') cannot exceed the order of Ry(X) and
the order of C(Y) cannot exceed the order Cj(X). Since the orders of both rows
and columns of Y do not exceed the corresponding orders of X, it can be concluded
that OI‘dQY:(Nl,Ml) and N1 SN, M1 SM O

3.2. Canonical form theorem

In this section, it is shown that a 2-sequence has finite order if and only if it can
be written in the canonical form.

Theorem 3. Suppose that X = [xjr];ffio is a 2-sequence with orde X = (N, M).
Then any element of X can be expressed as:

n ng—1 m m;—1 . ,
=32 0> (1) (1) end 22)

k=1 s=0 [=1 t=0

where A\, k=1,...,n; w, L =1,...,m are the row and column characteristic roots
respectively, with multiplicities ng, k =1,...,n and m;,l =1,...,m; c,(:lt) € C are

constants which do not depend on j and .

Proof. Remarks 4 and 5 state that if orde X = (IV, M) then any element xj, of X
can be expressed as:

fjnijlsm( Jrie (23)

k=1 s=0

m m;—1
Py = i ()t (24)

where £ ,(CJS) and nl(tr ) are constants dependent on j and r, respectively. Equation (22)
can be rewritten as:

or

me= 3 0 (D 2 () (25)

k=1 s=0 t=0
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or

o =imf Ars ZZ o () (20

Equating (23) and (25) systems of linear equations for the determination of c( st)

are obtained:

m m;—1
Z < ) tc(st) fks , (27)

=1 t=0

where k = ko € {1,...,n}, s = so € {0,1,...,np, — 1} are fixed and j =

0,1,..., M — 1. The number of linear systems required to determine all coefficients
(st) .
¢, is equal to N

Note that the matrices of all the linear systems defined in (27) are equal to the

confluent Vandermonde matrix [10]. Thus (27) has a single solution, denoted as c,(:lt).

The coefficients cgcl ) can also be calculated by solving M linear systems of order

N, that are obtained analogously to (27). Equating (24) and (26) yields:

n np—1
> D ( )Y e =, (28)

k=1 s=0

where | =1y € {1,...,m}, t =t5 € {0,1,...,my, — 1} are fixed and r = 0,1, ...,
N —1.

The matrices of these linear systems are congruent for all [ and ¢ and are equal

to the confluent Vandermonde matrix. The solution to (28) is denoted as cgcslt).

Because c,(dt and cklt satisfy (27) and (28) respectively, (25) and (26) yields:

I
bl
Il 3
—
i S
oL JL
DNt
- 3
Il T
(=)
-
o
Rl
Nt
Y
w3
N7
7 N
~_
>
Z
w

Thus é,(:l ) = c,(flt for all k,1, s, t, so the coefficients cl(jt) are unique. O

Corollary 1. The reversed statement to Theorem 3 is also true. Suppose that any
element of a 2-sequence X can be written as in (22). Then ords X = (N, M).

Proof. By (25), (23) and (27), it can be deduced that X has a row order of N.
Analogously, by (26), (24) and (28) X has a column order of M. O
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Example 4. Let X' = [xjr];“,f‘;m where xg, = cos(57), r = 0,1,2,... and zj, =
xor + (j+1)% 7 =1,2,..., then:

1 0 -1 0 1
5 4 3 4 5
10 9 8 9 10
17 16 15 16 17 16
26 25 24 25 26 25

By calculating Hankel mappings for the rows of X it can be noted that the row
characteristic roots of X are \;y = i, Ao = —i, A3 = 1, with multiplicities n; =
ny = ng = 1. Likewise inspecting the columns of X, it can be seen that the column
characteristic roots are p; = 0, us = 1 with multiplicities m; = 1, mo = 3. This
means that ordo X = (3,4).

The coefficients cgflt) are calculated using (28). To do so, the coefficients 771(: ),
r = 0,1,2 must be obtained. They are solutions of the following linear systems of

equations:
(r)
1 1 0 0 o Tor
(r)
1 0 Ty
“; ”z U?S) ", r=0,1,2 (30)
B py 2p2 1| ) Ty
pioop3 o 3p3 3pel [pl) T3y

Since the matrices of the linear systems (30) are equal, they can be written simul-

taneously:
0 1 2
1 1 0 0 7750) 7750) 7750) Too Tol To2
0 1 2
moope 10| ([0S nlg ng _ |70 T (31)
piops 2me 1| nlY ol | [T wa e
uio 3ps 3uel [ gl )| LT @ Ta
The solution reads:
0 1 2
7]50) 7750) 7750) -1 -1 -
0 1 2
Uéo) néo) 7750) ] 2 1 (32)
0 1 2|
ﬂél) ﬂél) 7751) 3 3
0 1 2 2 2
ﬂéz) ﬂéz) 7752)
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(st)

Using (28), coefficients ¢;, ’ are obtained:
o1 17 [T T e o0 [d0] 1
N O N R I Ui I I M R I R AR
A2 A3 A3 _Cé(iO)_ _77%)_ -1 -1 1] _Cg(io)_ -1
o1 1] [ [R] e r  [dP] e
Mod A [0 =0 =i~ 1] [0 = |1
A A3 _cé%o)_ _77%)_ -1 -1 1] _Cégo)_ 0]
o o (33)

IS I - I 7t S SRS I 2l
Mo As| [0 = ni | =0 =i 1 0| = (3]
11 1] [ [R] rr o [dP] e
R I e EE N

AT A _Cé(;z)_ _7753)_ -1 -1 1] _ngm_ 2]

The coefficients c}jt) can be conveniently represented by a matrix of the following

structure:

1
00 00 01 02 0 = 0 0
031 ) ng ) ng ) ng ) 2
00 00 01 02
C= Cgl ) Cg2 ) ng ) Cg2 | = 0 l 0 0 (34)
0(00) C(OO) 0(01) C(02) 2
31 32 32 32 11 3 2

Using the data obtained, the expression for any element of X can be written:

1. 1. . . AN AU
2y = GV + V(i) — P17 17 3({)11—1? ; 2@ R (3)

3.3. Minimal information subset and generation of 2-sequences
with finite order

In this section, it is proven that a finite subset of elements is sufficient to calculate
any element of a 2-sequence with finite order.

Definition 7. Suppose X = [xjr]z?;o is a 2-sequence with orde X = (N, M). The
elbow of X, denoted Elan o (X) is a finite subset of X, given by

E12N><2M(X):{Jijr|jZO,...,QM—l;r:OP_.’QN_1}/
{zjr|j=M,....2M —1;7 = N,...,2N — 1}. (36)

1650010-12
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A graphical representation of Elay w27 (X) is given below. Note that the number
of elements in Elynxop (X) is 2N -2M — NM = 3NM.

00 To1 v ZLo,N-1 Lo,N ce ZLo,2N-1 To,2N
Z10 11 trr T12N-1 T1,N T T1,2N-1 T12N
rpM-1,0 *M-1,1 ° TM-1,N-1 TM-1,N *** TM-1,2N-1 TM-12N
TnM,0 Tym,aa o ottt TM,N-1 TM,N *** TM2N-1 TM2N
r2mM-1,0 2M-1,1 **° L2M-1,N-1 L2M-1,N *** L2M-1,2N-1 L2M—-12N ---
T2M,0 Tom,a1 o o T2M,N-1 ToM,N .-+  T2M2N-1 TaM 2N

Theorem 4. Suppose that ordoX = (N,M), then the elements constituting
Elonxonm (X) are sufficient to determine expression (22).

Proof. Proof arises from (27) and (28). To find the column characteristic roots
U1y .oyt a maximum of 2M elements from each of the first N columns of X is
needed, because Hankel determinants of maximum order M need to be constructed.
Similarly, determining row characteristic roots A1, ..., A, requires at most 2N ele-
ments from the first M rows.

Regardless of whether (27) or (28) is used to determine cgjt)7 coefficients 51(@]2»
j=0,...,M—1or 771(:)» r=0,...,N—1must be computed. That can be performed
using only the first M x N block of X.

Because the computations outlined above are sufficient to determine the canon-
ical expression of X, it can be concluded that the elements of Elanxon (X) are
sufficient for computing characteristic roots of both rows and columns as well as
coefficients cgjt)7 thus determining (22). m|

Example 5. Suppose ords X = (3,3) and the elbow of X is given:

0 1 2
0 -1 0 1

0
Elgy6(X) = .

I
—
N = O =N
|
—
|
[\
|
—_

0 0

The entire 2-sequence can be reconstructed using (22).
Examining R (X),k = 0,1,2 yields the results: Ro(X) is a 1-LRS of order 3
with characteristic roots 1,4, —i, all of which have multiplicity 1; Ry(X) is a 1-LRS
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of order 2 with characteristic roots 4, —i, both with multiplicity 1; Re(X) is a 1-LRS
of order 3 with characteristic roots 1,4, —i, all of which have multiplicity 1.

This indicates that the row characteristic roots are Ay = 1, Ay = i, \3 = —1,
with multiplicities n1 = ny = n3z = 1. Also, since ny + ne +nz = 3 = N, the first
three rows are sufficient to determine all row characteristic roots.

Repeating the same procedure with C;(X), I = 0,1,2 it is obtained that: the
column characteristic roots are p; =1, ps = —i, ug = 1 with m; = mg =mgz = 1.

By procedures illustrated in previous examples, using only the first 3 x 3 of X,

the coefficients c}jt) are obtained:

1 -
- 0 0
00 00 00
Cgl) Cgl) Ci(’)l) )
1
C= [ 0 9| = 5 00 (38)
00 00 00
CI(L3) 053) Cé?,) 0 i
L 2 2
And the canonical expression reads:
= i 4 iy = L Ly (39)
9 2 2

4. Computational Experiments

It is clear that any real world time series does not have a finite LRS-order simply
because real world time series are inevitably contaminated by noise. Otherwise,
(if the LRS-order of a real world time series would be finite) the dynamics of the
sequence would be governed by a deterministic law — which contradicts to the
definition of noise [33].

4.1. Pseudo-order of a 1-sequence

A computational framework for the determination LRS pseudo-orders based on the
SVD of the Hankel matrix is presented in [15].

Because the computation of the Hankel determinants (11) is numerically unsta-
ble, it is unfeasible to use definition of 2-LRS directly to determine if a given
2-sequence has a finite order. To provide a more stable evaluation of a 2-sequence’s
order, the concept of the pseudo-order is used.

For a 1D sequence (p;;j € Zo), the pseudo-order is computed using the SVD
by the following algorithm [15]:

(1) A Hankel matrix Hg is formed from the sequence (p;;j € Zg) using the first
K elements.
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(2) The SVD of Hk is performed:
Hg = USVT, (40)

where U,V are the matrices of the orthonormal eigenvectors of HH T HTH
respectively and S is a diagonal matrix containing the ordered singular values:
0?>05>--->0% >0.

(3) For a chosen € > 0, define the pseudo-order K of the given sequence as the
number of singular values that are greater than e:

. 2 2
K:o03>e o3 <e (41)

It is demonstrated in [15] that the pseudo-order of a sequence tends to the true
order as € — 0, however, setting ¢ = 0 would lead to a great sensitivity to noise
in the sequence (p;;j € Zo). Thus, for real-world applications it is recommended
to choose € > 0 and investigate the pseudo-order. A number of algorithms that use
the concept of 1-LRS have successfully applied this approach [15-17].

It is clear that an alternative approach is also required for the computation of
2-LRS orders.

4.2. Pseudo-order of a 2-sequence

The concept of the pseudo-order outlined in the previous section cannot be applied
directly to 2-sequences, because they consist of two sets that contain infinitely many
1D sequences. However, the problems that occur in the 1D case are magnified
when considering 2-sequences. In particular, it is not immediately clear how to
evaluate the row and column orders of a given real-world 2-sequence, because the
characteristic roots of each row (column) are influenced by noise.

We propose the following approach to solve this problem using the mean order
of the rows (columns) of the given 2-sequence. Let X = [ac]T]J oo be a 2-LRS that
is homogenous. This means that the differences between the 1D orders of rows
(columns) are not large. Suppose the row order of X is equal to N. That means
that there exists a set of characteristic roots A1, ..., A, with multiplicities ny,...,n,
such that >, _, ny = N.

Then each row of X can be written in the canonical form:

(J)
B> sw( JEi (12)
keZ; s=0

where j € Zo; Z; C {1,...,n} and n,(gj) < ny for all k € Z;.
Denote Nj := 3 ez, n,(c) Then

order(zj,;r € Zg) = Nj. (43)

The limit of the mean order of all rows is considered:

N := lim Z Ni. (44)

Jj—+o0 ]
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Since 0 < Ny, < N, k € Zy, the mean order (44) can be written as:

_ 1j’1
N= lim = (N—aq), 45
j;gnm]’;( ) (45)

where 0 < ¢, < N. Equation (45) then yields:
N —maxq; < N < N — min ¢;, 46
J€EZo G=7= jElZo g (46)

which can be rearranged into:
N + ming; < N < N + maxgq;. 47
jGIZI; G=0= jez)o(qj (47)

If the considered 2-sequence is homogenous, the differences in order between rows
g; are small, thus (47) yields the approximation:

N~ N. (48)

Using (48) and the SVD, the row pseudo-order of a 2-sequence X can be eval-
uated by using the algorithm given in Sec. 4.1 with the same £ on each row and
considering the mean value of the pseudo-ranks obtained. Thus, the pseudo row rank
N of a homogenous 2-sequence X computed from the first m rows is defined as:

m—1

N := N.. (49)

<

1
m <

=0
Analogous computations can also be performed for the columns of a given homoge-
nous 2-sequence X.

4.3. A synthetic numerical example

Let us consider two digital images — a black and white image of bricks (Fig. 1(e),
denoted as image B) and a grayscale image of uniformly distributed random pixels
(Fig. 1(a), denoted as image N). Let us construct a sequence of digital images by
assuming discrete values of parameter A in the following equation:

IN) =(1—AN+AB; 0<A<IL (50)

It is clear that I(0) = N, I(1) = B. The image of bricks evolves from the noise as
A varies from 0 to 1 (Fig. 1).

4.3.1. LRS pseudo order and Shanon entropy

It is well known that Shanon entropy H(X) of a digital image determines the
randomness of that image [2]. We use standard techniques for the computation of
the entropy:

H(X) == prlogy pi. (51)
k=1

where py, is the histogram count for the kth of m bins of the given digital image.
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(d) (e)

Fig. 1. The digital image of bricks evolves from noise as parameter A varies from 0 to 1. Digital
images in parts (a)—(e) are shown at A = 0,0.25,0.5,0.75 and 1 accordingly.

The entropy (51) is computed for a series of digital images as A is varied from
0 to 1 according to Eq. (50) (Fig. 2). Note that we visualize the inverse of the
entropy scaled to the interval [0,1] in Fig. 2. Such representation helps to clearly
interpret the randomness of the evolving image. Entropy is maximal at A = 0 and
monotonically decreases as the image of bricks becomes clearer (Fig. 2).

There exists a natural connection between the LRS order of a sequence and the
algebraic complexity of that sequence [33]. Therefore, one could expect a similar
relationship between the 2-LRS order and the complexity of the digital image as
well.

We use the same series of digital images represented by Eq. (50) and compute the
averaged LRS-pseudo-orders for rows and columns using the algorithm described in
Sec. 4.2 (the dimension of the Hankel matrix is set to 80; ¢ is set to 0.5). However,
since the inverse of the entropy is visualized in Fig. 2, we also visualize inverse
pseudo-orders in Fig. 2.

The 2-LRS pseudo-order for the image of noise is equal to (80, 80) — correspond-
ing to (g5, 35) in Fig. 2 at A = 0. Then, LRS pseudo-orders for rows and columns
monotonically decrease as A is varied from 0 to 1 (Fig. 2). However, the variation
of LRS pseudo-orders for rows and columns is not identical. The periodicity of the
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Fig. 2. Evolution of entropy and row/column LRS pseudo-order as parameter A\ varies from 0
to 1. The left y-axis represents the inverse of the entropy H(X). The right y-axis represents the
inverse of the average row and column LRS-pseudo-order.

image of bricks along the rows is longer compared to the periodicity of this image
along the columns (this is due to the shape of the bricks). The shorter average
period results into a smaller LRS pseudo-order. 2-LRS pseudo-order for the image
of bricks (without noise) is equal to (22,17) corresponding to (45, =) in Fig. 2 at
A=1

Therefore, the variation of 2-LRS pseudo-order of the digital image I(\) reveals
not only the evolution of the complexity of the image — but also the geometrical
orientation of the evolving pattern.

4.3.2. LRS pseudo order and image correlation

Shanon entropy is a general measure of image randomness, thus it cannot be used to
measure randomness horizontally (along the rows) or vertically (along the columns)
in a given image. To perform measurements of randomness in horizontal and ver-
tical directions, we use correlation, one of the Haralick features derived from co-
occurrence matrices [9]:

N, N,
1 g g - ) )
pr(X) = — > (i5)p(i, ) = prepy | 5 (52)
Y\ =1 j=1

where N, is the number of gray levels in the image X; p(4,j) is the entry of
the co-occurrence matrix (the probability that the pixel with gray level i is
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adjacent to the pixel with gray level j); g, 04, iy, 0y are the means and stan-
dard deviations of the partial probability density functions of the co-occurrence
matrices.

Horizontal and vertical adjacency is used to compute two correlations for each
image using (52); the correlation computed using horizontal and vertical adjacency
is referred to as row and column correlations, respectively.

A comparison of row and column LRS pseudo orders and correlations of the
image sequence of bricks (Fig. 1) is pictured in Fig. 3. As A is varied from 0 to 1,
both row and column correlations increase — while row and column orders decrease
monotonically. As noted previously, the periodicity of the image sequence of bricks
in Fig. 1 is not equal along the rows and columns. This effect can be explained
because the period is longer along the rows. Thus, the LRS pseudo order of rows
is larger compared to the pseudo order of columns. The LRS pseudo order for
rows and columns is 22 and 17 respectively at A = 1. A similar effect is observed
with respect to the Haralick feature of correlation — row correlation is higher than
column correlation because more adjacent pixels are of the same gray level. Row
correlation is almost equal to 1 when A > 0.9 and column correlation is 0.82 in the
same range.

This computational experiment demonstrates that LRS pseudo-orders do repre-
sent the evolution of complexity in digital images along the horizontal and vertical
axis.

1 T T T T T P . 80
== = row correlation - -
0.9 " s column correlation 7
7/
=== = row order
0.8 |7 = column order
0.7 4
3
8 0.6 15
ki 2
?d 0.5 B §
—
o o
3] 4 »
0.4 2
=
0.3 4
0.2 4
0.1 [
0 L 17
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A

Fig. 3. Evolution of row/column correlation and row/column LRS pseudo-order as parameter A
varies from 0 to 1. The left y-axis represents the row/column correlations pgr(X). The right y-axis
represents the row/column LRS-pseudo-order.
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4.4. 2-sequence pseudo order of self-organizing patterns

We will use Beddington—de-Angelis-type predator-prey model with self- and cross-
diffusion [35, 40]:

ON N BN 2 2.
at —’I“(l K) B+N+’LUPP+D11V N+D12V P, (53)
OP N

= LP — NP + Dy V2N + Dy V2P, (54)

9t B+ N+wP

where ¢ is time; N and P are densities of preys and predators; # is a maximum
consumption rate; B is a saturation constant; w is a predator interference param-
eter; 1 represents per capita predator death rate; and € is the conversion efficiency
of food into offspring. Nonzero initial conditions N(x,y,0) > 0; P(x,y,0) > 0 are
set in a rectangular domain with periodic boundary conditions. The following set
D11 = 0.01, D13 = 0.0115, Do; = 0.01, Dao =1, 7 =05, e =1, = 0.6, K = 2.6,
w = 0.4, B = 0.3154 results in the evolution of a self-organizing pattern from
the equilibrium point (N*, P*) = (0.430580, 0.718555) which is perturbed by small
random perturbation [35]. Computational reconstruction of the evolution of self-
organizing pattern of preys from random initial conditions is illustrated in Fig. 4.

Fig. 4. The evolution of self-organizing Beddington—de-Angelis type patters. Digital images in
parts (a)—(e) are shown at 0, 15,000, 25,000, 50,000 and 70,000 time forward steps accordingly.
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We repeat the computational experiments with a sequence of images repre-
senting the evolution of self-organizing patterns (Fig. 5) with ¢ set to 0.5. Now,
the evolution of the entropy is very complex and nonmonotonous (Fig. 5). How-
ever, computation of 2-LRS pseudo-orders reveal the hidden rules of the complexity
variation during the evolution of the self-organizing pattern.

Initially, the image is random — so 2-LRS pseudo-order for the image of noise is
equal to (80, 80) (Fig. 5). Then, the self-organizing pattern starts to evolve and the
complexity of the image decreases — 2-LRS pseudo-order is equal to (16.6,13.7) at
t = 15,000 (the time step of time forward iteration is 0.01). However, the complexity
of image suddenly starts to increase again at 15,000 < t < 25,000. Astonishingly,
the complexity of the fully developed pattern is higher compared to the complexity
of pattern in the middle stage of development (2-LRS pseudo-order is equal to
(24.2,21.2) at t = 70,000).

Such an effect can be explained by a rather simple (though not trivial) con-
sideration. The fully developed pattern is not a regular pattern. The distribution
of stripes (and the forms of stripes) in the fully developed image are governed by
a large scale spatial chaos law. Note that this pattern is unique for every initial
condition — different random initial conditions result into different patterns of
stripes.

Initial random conditions could be considered as small scale spatial chaos in
that respect. However, it is interesting to observe that the evolution from small scale
spatial chaos to large scale spatial chaos is not straightforward. First, random initial
conditions evolve into a seemingly regular pattern of spatial waves. However, Turing
instability [23] deforms these almost regular waves into a complex irregular pattern
of large scale stripes. 2-LRS pseudo-orders allow efficient and clear visualization of
these complex processes of transformation.

Nonmonotonous effects are observed in the evolution of the row and column
correlation (Fig. 6). Both row and column correlations reach a peak value of almost
1 at t = 20,000. After this peak, both correlations dip slightly but do not fluctuate:
they maintain values above 0.98 in the interval 20,000 < ¢t < 70,000. Note that the
values of row and column correlations do not differ significantly one from another
during the evolution of the image. This situation is completely different for row and
column pseudo orders — they do separate one from another. This feature enables
to draw conclusions about the complexity of the digital image in the horizontal and
vertical directions.

Moreover, 2-LRS pseudo-orders exemplify the orientation of stripes in self-
organized patterns. The bricks are elongated along the horizontal axis in Fig. 1.
Thus, the period along the rows is longer and the mean LRS-order of the rows
is larger compared to the columns (Fig. 2). The same effect can be observed for
self-organizing patterns (Fig. 4). Figures 5 and 6 demonstrate that the mean row
LRS-order is larger compared to the mean column LRS-order. This implies that
the pseudo-period along the rows in Fig. 4 is longer compared to the columns.
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Fig. 5. Evolution of entropy and row/column LRS pseudo-order of the Beddington—de-Angelis
type self-organizing pattern for 70,000 time-forward steps. The left y-axis represents the inverse
of the entropy H(X). The right y-axis represents the inverse of the average row and column
LRS-pseudo-order.
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Fig. 6. Evolution of row/column correlation and row/column LRS pseudo-order of the
Beddington—de-Angelis type self-organizing pattern for 70,000 time-forward steps. The left
y-axis represents the row/column correlations pg(X). The right y-axis represents the average
row/column LRS-pseudo-order.
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5. Concluding Remarks

The concept of the order of a 2-sequence is presented in this paper. The extension
of the order of 1-sequence to the order of 2-sequence is far from being trivial —
it requires the introduction of the concept of the minimal information subset of
2-sequence. The canonical expression theorem defines the necessity and sufficiency
for the generation of 2-LRS.

It is demonstrated that using the SVD, the concept of 2-LRS can be successfully
applied for the analysis of image complexity. Because of the ability to measure com-
plexity along the z- and y-axis, the row and column 2-LRS pseudo-orders provide
a deeper insight into the complexity of images compared with Shanon entropy.

2-LRS can also be used to analyze self-organizing patterns. It is shown that
unlike Shanon entropy, 2-LRS pseudo-order can be applied to detect the formation
of almost regular patterns that evolve from small scale spatial chaos and deform due
to Turing instability as time moves forward and large scale spatial chaos appears.

There are a number of potential applications of 2-LRS that are presented in
this paper. One of the most intriguing is the construction of an algebraic approxi-
mation of any 2D image using the canonical expression of 2-LRS. In the 1D case,
approximations constructed using 1-LRS theory have been shown to be effective in
reducing the Runge effect and dealing with noise in real-world sequences [13].

New results on the construction of such approximations in the 2D case would
enable the use of 2-LRS theory in image compression applications (exploiting the
concept of minimal information subsets), image reconstruction and filtering, includ-
ing denoizing algorithms.

The theoretical and practical results presented in this paper also open new pos-
sibilities for applications in the area of complexity analysis, 2D interpolation, infor-
mation compression and encryption. These applications remain definite objectives
of future research.
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